

Impressum

Herausgeber

Umweltämter der Kantone Aargau, Bern, Luzern, Schwyz, Solothurn, St. Gallen, Thurgau, Zug und Zürich

Bericht

Dr. Stefan Rubli, Energie- und Ressourcen-Management GmbH, 8807 Freienbach

Grafiken (Abbildungen. 2-4)

Martin Schneider Tinu Schneider Datenanalyse 3600 Thun

Projektgruppe

Dr. Stefan Rubli, Energie- und Ressourcen-Management GmbH, Martin Schneider, Tinu Schneider Datenenanalyse

Begleitgruppe

David Schönbächler (Departement Bau, Verkehr und Umwelt, Kanton Aargau),
Oliver Steiner (Amt für Wasser und Abfall des Kantons Bern),
Michael Lutz (Dienststelle Umwelt und Energie Kanton Luzern),
Chaspar Gmünder (Amt für Umwelt und
Energie Kanton St. Gallen),
Thilo Arlt (Amt für Umwelt Kanton Solothurn),
Stefan Rüegg (Amt für Umweltschutz Kanton Schwyz)
Achim Kayser (Amt für Umwelt Kanton Thurgau),
Bernhard Brunner (Amt für Umweltschutz Kanton Zug),
Dominik Oetiker (AWEL),
David Hiltbrunner (Bundesamt für Umwelt),
Martin Weder, (FSKB)
Cyril Inderbitzin (arv Baustoffrecycling Schweiz).

Bezug

In den Umweltämtern der Kantone Aargau, Bern, Luzern, Solothurn, Schwyz, St.Gallen, Thurgau, Zug und Zürich

Download als pdf über: Google: KAR-Modell - Modellierung der Bau-, Rückbau- und Aushubmaterialflüsse: Nachführung 2018

Zürich, März 2020

Zusammenfassung

Die neun Kantone AG, BE, LU, SG, SO, SZ, TG, ZG und ZH haben ihre KAR-Modelle (Kies-, Aushub- und Rückbaumaterialfluss-Modelle) für das Bezugsjahr 2018 nachführen lassen. Zudem entwickeln die Kantone Basel-Stadt und Basel-Landschaft gemeinsam ein KAR-Modell, welches vermutlich bei der nächsten Nachführung in zwei Jahren in die überregionale Betrachtung mit einbezogen werden kann. Einige Kantone verfügen nun bereits über Modelldaten von fünf Bezugsjahren, d.h. für den Zeitraum 2013 – 2016 und für das Jahr 2018. Anhand der von den Kantonen erhobenen Daten und den mit den statischen Modellen ermittelten Materialflüssen können die relevanten mineralischen Materialflüsse, welche zur Bewirtschaftung des Bauwerks notwendig sind, auf Kantonsebene abgebildet werden. Die grafischen Darstellungen der Materialflüsse sowie der zeitlichen Entwicklungen der verschiedenen Materialflüsse ermöglichen ein besseres Systemverständnis und liefern szenarioabhängige Prognosen zur langfristigen Entwicklung der relevanten Materialflüsse.

Die Auswertungen zeigen, dass die modellierten Materialflüsse der einzelnen Kantone gut mit den erhobenen Materialflüssen übereinstimmen. Auch bei den zeitlichen Entwicklungen stimmen die modellierten gut mit den erhobenen Materialflüssen überein. Durch die regelmässigen Erhebungen in den verschiedenen Kantonen und durch die verschiedenen Modelloptimierungsmassnahmen konnten die Modelle entsprechend gut validiert werden.

Die Nachführung der statischen Modelle ergab die folgenden Erkenntnisse:

- Bezüglich der Versorgung mit mineralischer Gesteinskörnung liegen die Autarkiegrade in den Kantonen AG, BE, SO, ZH und ZG für das Bezugsjahr 2018 im Bereich von 100 ± 6%.
 Demgegenüber bewegen sich diese in den Kantonen LU, SG und TG mit 50% – 63% auf deutlich tieferen Niveaus. Zudem nimmt in den Kantonen SG und TG der Autarkiegrad noch immer tendenziell ab. Im Kanton SZ beträgt der Wert 88%.
- Bei der Aushubentsorgung bewegen sich die Autarkiegrade der Kantone BE, LU, SG und TG im Bereich von 100 ± 6%. In den Kantonen AG, SO und ZG liegen diese mit Werten von 131%, 113% und 137% deutlich höher. Demgegenüber bewegt sich der Autarkiegrad im Kanton Zürich mit 75% noch immer auf tiefem Niveau, auch wenn dieser tendenziell leicht ansteigt.
- Die mit den statischen Modellen gerechneten Inputflüsse ins Bauwerk und der Aushubanfall aus dem Bauwerk korrespondieren für die Jahre 2013 bis 2016 und für das Bezugsjahr 2018 bei allen Kantonen relativ gut mit den im dynamischen Modell gerechneten Entwicklungen der entsprechenden Materialflüsse überein. Einzelne Abweichungen sind meistens auf spezifische Vorkommnisse (z.B. Zu-/Abnahme Bauintensität) zurückzuführen.
- Gleiches gilt für den Primärmaterialabbau und die Aushubablagerung: Auch hier stimmen die Werte aus dem statischen Modell in den meisten Kantonen gut mit den modellierten Entwicklungen überein. Der Vergleich von erhobenen mit den im statischen Modell gerechneten Materialflüssen zeigt bei allen Kantonen eine gute Übereinstimmung.
- Die Entwicklung der kumulierten Differenzen stimmen in allen Kantonen noch immer gut mit den Werten der Bezugsjahre 2013 - 2016 und 2018 überein. Bei den Kantonen AG, BE und ZH bewegen sich die jährlichen Differenzen im negativen Bereich. Der Grund hierfür ist einerseits der Einbezug des Abbaus von weiteren Baustoffen wie Kalk/Mergel, Ton,

Gipsgestein usw. in die Bilanz (AG und BE). Diese Auffüllvolumina stehen aktuell jedoch erst beschränkt für die Auffüllung zur Verfügung. Andererseits sind es im Kanton Zürich vor allem die massiven Aushubmaterialexporte, welche zu dieser Entwicklung führen.

• Die Entwicklungen der kumulierten Differenz verläuft in fünf Kantonen (LU, SG, TG, SZ, ZG) in den positiven Bereich. Dies bedeutet, dass die in Abbaustellen geschaffenen Volumen unter den gegebenen Rahmenbedingungen längerfristig nicht ausreichen, um das anfallende Aushubmaterial dort aufzunehmen. Im Kanton SO bewegten sich die Entwicklungen der kumulierten Differenz im Bereich des Nullwertes. Die Bilanz von Kiesabbau und Auffüllung mit Aushub ist nahezu neutral.

Mit einem Anteil von 20% bis über 30% decken die Rückbaustoffe in den meisten Kantonen bereits einen erheblichen Teil des Gesteinskörnungsbedarfs ab. Damit wird Kies/Sand substituiert, womit weniger Kies abgebaut werden muss. Dies führt jedoch auch zu einer Reduktion der verfügbaren Auffüllvolumina zur Rekultivierung der Kiesgruben. Die Unternehmen, welche in der Baustoffversorgung bzw. Aushub- und Rückbaumaterialentsorgung tätig sind, stehen vor der Herausforderung, sich diesen veränderten Rahmenbedingungen zu stellen. Da die Rückbaumaterialien nicht mehr deponiert, sondern gemäss der VVEA zu möglichst hohen Anteilen verwertet werden müssen, wird sich der Anteil der Rückbaustoffe am gesamten Gesteinskörnungsbedarf weiter erhöhen. Verschiedene Kantone sind daran, Recyclingbaustoffstrategien zu entwickeln und umzusetzen. Wichtig bei einer solchen Umsetzung ist der Einbezug der betroffenen Akteure. Insbesondere die Kies- und Betonproduzenten müssen überzeugt werden, hochwertige RC-Gesteinskörnungen zu produzieren und einzusetzen. Erst wenn dies gelingt, erkennen und entwickeln die Produzenten neue Absatzkanäle für die RC-Baustoffe, welche die Umsatzverluste durch den sinkenden Kiesabsatz kompensieren können.

Die Auswirkung der verminderten Rekultivierungsvolumen für Aushubmaterial sind bereits heute in vielen Regionen spürbar. Es müssen künftig vermehrt Aushubdeponien geplant werden, um genügend Deponiekapazitäten zur Verfügung stellen zu können. Die Resultate aus der dynamischen Modellierung sollen die Kantone bei der Aushubdeponieplanung unterstützen. Insbesondere die kumulierte Differenz zwischen Ablagerung und Abbau ist ein wichtiges Hilfsmittel, um die Entwicklungen im Bereich der Aushubentsorgung in den einzelnen Kantonen abzuschätzen.

Die hier aufgeführten Kantone haben die Absicht bekundet, im Jahr 2021 das Bezugsjahr 2020 nachzuführen. Die Kantone Basel-Stadt und Basel-Landschaft werden ihr gemeinsames Modell allenfalls mit in die überregionale Modellierung mit einbeziehen.

INHALTSVERZEICHNIS

1 .	AUSGANGSLAGE UND ZIELSETZUNG	7
1.1	Ausgangslage	7
1.2	Zielsetzung	8
2	METHODEN	8
2.1	Materialflussschema statisches Modell	8
2.2	Modellierung der Materialflüsse	9
2.3	Relevante Materialflüsse für die Modellierung	10
2.4	Vergleich der Modellparameter	11
3	RESULTATE	13
3.1	Baustoffbedarf, Aushub- und Rückbaumaterialanfall	13
3.2	Materialflüsse über die Kantonsgrenzen	14
3.2	2.1 Kiesflüsse über die Kantonsgrenzen	14
3.2	2.2 Aushubmaterialflüsse über die Kantonsgrenzen	14
3.2	2.3 Rückbaumaterialflüsse über die Kantonsgrenzen	14
3.3	Autarkiegrad bezüglich der Baustoffversorgung und Aushubentsorgung	18
3.4	Ausgewählte Materialflüsse auf pro-Kopf-Basis	20
3.5	Entwicklung der Materialflüsse bis 2035	23
3.	5.1 Entwicklung des Baustoffbedarfs und des Aushubmaterialanfalls	23
3.	5.2 Entwicklung des Primärmaterialabbaus und der Aushubablagerung	25
3.	5.3 Kumulierte Differenz zwischen Aushubablagerung und Primärmaterialabbau	27
4	DISKUSSION UND SCHLUSSFOLGERUNGEN	29
4.1	Gesteinskörnungsbedarf und Verwertung der Rückbaustoffe (RBS)	29
4.2	Autarkiegrade und Entwicklung	30
4.3	Schlussfolgerungen	31
AUS	SBLICK	32
4.4	Nachführung der statischen Modelle	32
4.5	Mitwirkung der Verbände	32
4.6	Weiterentwicklung des Modells	32
4.7	Weitere Aktivitäten im KAR-Bereich	32
5	LITERATUR	33
ANI	HANG	34
A.1.	Kurzbeschreibung der Prozesse	34
A.2.	· ·	
A.3.		
A.4.		
A.5	Input-Output-Tabellen für Kies, Aushub- und Rückbaumaterial	46

Glossar

BFS Bundesamt für Statistik

KAR-Modell Kies-, Aushub- und Rückbaumaterialflussmodell

MFA Materialflussanalyse

Mio. Millionen

m³ Kubikmeter: Alle Angaben in m³ beziehen sich auf das Festmass!

Primärmaterialabbau Umfasst den Abbau der mineralischen Rohstoffe Kies/Sand, Kalk,

Mergel, Gestein und Tonmineralien.

RC Recycling

RBM Rückbaumaterial
RBS Rückbaustoffe

VVEA Verordnung über die Vermeidung und die Entsorgung von Abfällen

Definitionen

Aushub- Oftmals wird bei der Entsorgung von Aushub- und Ausbruchmaterial keine Unterscheidung zwischen Bodenaushub- und Aushubmaterial

keine Unterscheidung zwischen Bodenaushub- und Aushubmaterial gemacht. Im vorliegenden Bericht entsprechen die angegebenen Volumina dem gesamten Aushub, das heisst, der Summe von A-, B- und C-Horizont. In den Abbildungen und Tabellen wird das Aushub- und Ausbruchmaterial unter dem vereinfachten Begriff **«Aushub»**

zusammengefasst.

Rekultivierung» ist die Wiederauffüllung von

Materialentnahmestellen zu verstehen.

Aushubanfall Aushub-/Ausbruchmaterial und Bodenaushub. das/der aus der

Bewirtschaftung des Bauwerks anfällt → entspricht dem Materialfluss

vom Prozess «Bauwerk» in den Prozess «Triage Aushub».

Baustoffe Der Begriff Baustoffe beinhaltet Kies und Sand als Hauptkomponenten.

Die Beiträge von Zement (bzw. Kalk/Mergel), Back- und Kalksandsteinen sowie Ziegeln (bzw. Tonmineralabbau) zu den Baustoffflüssen sind grob abgeschätzt und werden neu separat dargestellt. In Kantonen mit Kalk/Mergel- und Tonmineralabbau gelangt ein grosser Teil dieser

Materialien in den Export von weiteren mineralischen Baustoffen.

Rückbaumaterial Als Rückbaumaterial wird sämtliches während einer Sanierung bzw.

eines Rückbaus anfallendes mineralisches Material (z.B. Misch- und Betonabbruch, Ausbauasphalt usw.), welches noch nicht aufbereitet

wurde, bezeichnet.

Rückbaustoffe Rückbaustoffe umfassen sämtliche mineralische Rückbaumaterialien.

welche aus Aufbereitungsanlagen stammen und als rezyklierte

Gesteinskörnung dem Baustoffkreislauf zugeführt werden.

1 Ausgangslage und Zielsetzung

1.1 Ausgangslage

Die Kantone Aargau, Bern, Luzern, St.Gallen, Solothurn, Schwyz, Thurgau, Zug und Zürich haben die Kies-, Aushub- und Rückbaumaterialflüsse (KAR-Materialflüsse mit dem statischen KAR-Modell) für das Bezugsjahr 2018 rechnen lassen. Im dynamischen Teil des Modells lassen sich Szenarien rechnen, welche auf der Bevölkerungsentwicklung in den einzelnen Kantonen basieren. Die Modellierungen dieser Szenarien ermöglichen einerseits Aussagen zur künftigen Entwicklung der KAR-Materialflüsse bis zum Jahr 2035. Andererseits können auf Basis dieser Resultate frühzeitig Massnahmen zur Steuerung der Materialflüsse sowie zur Planung von Deponie- und Verwertungskapazitäten definiert werden.

Das Modell wurde in den vergangenen Jahren ständig weiterentwickelt. Es beteiligten sich nicht jedes Jahr alle Kantone an der Modellnachführung, alle am Projekt beteiligte Kantone stellen jedoch jedes Jahr die Daten aus den Erhebungen zu den Materialfüssen zur Verfügung. In der Tabelle 1 sind zur Übersicht die Modellentwicklungsschritte sowie die jeweils an den Projekterweiterungen und Modellnachführungen beteiligten Kantone aufgeführt.

Tabelle 1: Modellentwicklungsschritte sowie die jeweils an den Projekterweiterungen/Nachführungen beteiligten Kantone.

Modell-	Modellinhalt und	Bezugsjahr	Beteiligte	Berichte
version	Erweiterungen	stat. Modell	Kantone	zum Modell
Version 1	- Entwicklung Basismodell.	2010	AG, SH, SZ, SO, SG, TG, ZG, ZH	Rubli, 2012
Version 2	 Zentralisierung Modell. Reduktion Sensivität des Modells bezgl. Bevölkerungsentwicklung mittels Dämpfungsfunktionen. Neuvalidierung mit Datenreihen von 1995 - 2010 von zwei Kantonen. 	2013	BE, LU, SO, SG, TG, ZG, ZH	Rubli, 2015
Version 3	 Differenzierung der Aushubmaterial- flüsse in Rekultivierung, Aushub- deponien und Deponien Typ B. Nachführung Bezugsjahr 2014. 	2014	BE, SO, SG, TG, ZG, ZH Nur Daten: LU, SZ	Rubli, 2016
Version 3	- Keine wesentlichen Änderungen.	2015	AG, BE, LU, SO, SG, TG, ZG, ZH Nur Daten: GL, SZ	Rubli, 2017
Version 4	 Weitere Differenzierung des statischen Modells: Einführung des Subprozesses «Weitere Entnahmestellen» in dem der Abbau von mineralischen Baustoffen wie Kalk, Mergel, Tonmineralabbau usw. sowie die Wiederauffüllungen mit Aushubmaterial stattfindet. Trennung der Kiesimporte/-exporte und der Importe/Exporte der weiteren mineralischen Baustoffe Bezeichnungen gem. VVEA 	2016 und 2018	AG, BE, LU, SO, SG, SZ, TG, ZG, ZH BS+BL: Modellierung noch nicht abgeschlossen Nur Daten: GL	Rubli, 2018 und 2020 (vorliegender Bericht)

1.2 Zielsetzung

Die am Projekt teilnehmenden Kantone haben sich für eine Nachführung des Bezugsjahres 2018 ausgesprochen, um die kantonsübergreifenden Materialflüsse zu bestimmen und deren langfristige Entwicklung zu kennen. Hierbei geht es darum, aufzuzeigen, inwiefern die modellierte Entwicklung der Materialflüsse mit den erhobenen Materialflüssen übereinstimmen und ob allenfalls Anpassungen bei den Szenarienrechnungen vorgenommen werden müssen.

2 Methoden

Die methodischen Grundlagen und der Aufbau des Modells (statischer und dynamischer Teil) sind in den vier vorangegangenen Berichten ausführlich beschrieben (Rubli, 2012, 2015, 2016, 2018). Im Modell des Bezugsjahres 2018 wurden keine methodischen Änderungen oder Erweiterungen vorgenommen.

2.1 Materialflussschema statisches Modell

Das Materialflussschema in der Abbildung 1 dient als Grundlage zur Modellierung der statischen Modelle. Die Materialflüsse sind jeweils unterhalb der Pfeile kurz beschrieben. Die für die mathematische Modellierung verwendeten Bezeichnungen sind jeweils über den Pfeilen angegeben. So wird der Materialfluss vom Prozess Nummer 9 «Baustoff produzieren» in den Prozess Nummer 1 «Bauwerk» beispielsweise als Fluss «A91» bezeichnet (Materialfluss von Prozess Nr. 9 in Prozess Nr. 1).

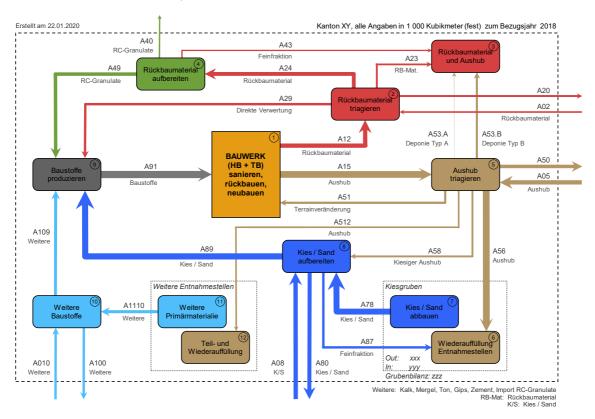


Abbildung 1: Beispiel des Materialflussschemas eines Kantons mit Bezeichnung der Materialflüsse. Beispiel: Der Materialfluss vom Prozess Nummer 9 «Baustoff produzieren» in den Prozess Nummer 1 «Bauwerk» wird als Fluss «A91» bezeichnet (Materialfluss von Prozess Nr. 9 in Prozess Nr. 1).

2.2 Modellierung der Materialflüsse

Die Modellierung des statischen Systems erfolgt mittels eines iterativen Vorgehens. Dabei werden die Modellparameter so verändert bis eine möglichst gute Übereinstimmung zwischen modellierten und erhobenen Materialflüssen erreicht wird. Um die Qualität der Übereinstimmung zu erkennen, wird jeweils die Abweichung zwischen erhobenen und modellierten Materialflüssen in einer Tabelle angegeben (siehe Beispiel in Tabelle 2). Die Materialflüsse werden bei der Modellierung so lange optimiert, bis die Abweichungen bei den Materialflüssen A78 (Abbau Kies/Sand) und "Aushubflüsse A53.A+B. und A56)" möglichst gering sind. Die Abweichung beim Materialfluss A49 ist deshalb so gross, weil davon ausgegangen wird, dass in den 305'000m³ RC-Granulaten ein Anteil an primärer Gesteinskörnung im Umfang von rund 15% enthalten ist.

Tabelle 2: Vergleich der modellierten (Spalte "Modell") und der erhobenen Materialflüsse (Spalte "Daten"), sowie deren Differenz in Prozenten zum Gesamtfluss (hinterste Spalte) für den Kanton Luzern im Bezugsjahr 2018.

		Modell	Daten	Abweic	hung
Vergleich	Modell-Daten	1000m3 (fest)	1000m3 (fest)	= (Modell	/ Daten) - 1
A23 + A43	RB-Material und Feinfraktion	69	70	-1%	Modell kleiner als Daten
A24	Rückbaumaterial	288	288	0%	Modell kleiner als Daten
A29	Direkte Verwertung	26	0	na	
A43	Feinfraktion	9	0	na	
A49	RC-Granulate	249	305	-18%	Modell kleiner als Daten
A51	Terrainveränderung	50	50	0%	Modell grösser als Daten
A53.A	Deponie Typ A	587	587	0%	Modell grösser als Daten
A53.B	Deponie Typ B	75	75	0%	Modell grösser als Daten
A56	Aushub	309	307	0%	Modell grösser als Daten
A58	Kiesiger Aushub	30	30	0%	Modell grösser als Daten
A512	Aushub	0	0	na	
A78	Kies / Sand	634	634	0%	Modell grösser als Daten
A86	Feinfraktion	60	0	na	
A89	Kies / Sand	1'113	0	na	
A91	Baustoffe	1'550	0	na	
A1110	Weitere	64	64	-1%	Modell kleiner als Daten
A100	Weitere	45	45	0%	Modell grösser als Daten
A010	Weitere	143	0	na	

2.3 Relevante Materialflüsse für die Modellierung

Für die teilnehmenden Umweltämter ist es oft schwierig zu beurteilen, welche Materialflüsse für die Modellierungen wichtig sind bzw. welche Materialflüsse erhoben werden sollen. Aus diesem Grund sind in der Tabelle 3 die verschiedenen Materialflüsse aufgeführt. Jedem Materialfluss ist die Relevanz für die Modellierung zugeordnet. In der letzten Spalte ist angegeben, welche Materialflüsse unbedingt erhoben werden sollten (grün) und bei welchen Materialflüssen eine Erhebung sinnvoll (gelb) bzw. wünschenswert wäre (orange).

Tabelle 3: Relevanz der Materialflüsse für die Modellierung und erforderliche Erhebungen.

Bezeichnung	Materialfluss	Relevanz für Modellierung	Erhebung
A78	Kies-/Sandabbau	sehr wichtig	unbedingt erforderlich
A1110	Abbau weitere Primärmaterialien	sehr wichtig	unbedingt erforderlich
A56	Aushub in Rekultivierung	sehr wichtig	unbedingt erforderlich
A53.A	Aushub in Deponie Typ A	sehr wichtig	unbedingt erforderlich
A512	Aushub in Teil- und Wiederauffüllung	sehr wichtig	unbedingt erforderlich
A53.B	Aushub in Deponie Typ B	wichtig	erforderlich
A24	Rückbaumaterial in Aufbereitung	sehr wichtig	unbedingt erforderlich
A49	RC-Granulate	sehr wichtig, wenn A24 nicht bekannt	unbedingt erforderlich, wenn A24 nicht bekannt
A05	Importe Aushub in Rekultivierung, Deponien Typ A und B	wichtig, wenn möglich differenziert nach Herkunftskantonen	erforderlich, wenn möglich differenziert nach Herkunftskantonen
A80	Export Kies und Sand	wichtig, wenn möglich differenziert nach Herkunftskantonen	erforderlich, wenn möglich differenziert nach Herkunftskantonen
A09	Importe Kies und Sand	wichtig	nicht unbedingt erforderlich, weil kaum zu erheben
A02	Import Rückbaumaterial in Aufbereitung (über Triage)	Wichtig, wenn grosse Mengen	wenn möglich, dann erheben
A23	Rückbaumaterial in Deponie	weniger wichtig	wenn möglich, dann erheben
A40	Export RC-Granulate	weniger wichtig	wenn möglich, dann erheben
A51	Terrainanpassungen	weniger wichtig	wenn möglich, dann erheben
A58	Aushub zur Aufbereitung	weniger wichtig	wenn möglich, dann erheben
A43	Feinfraktion	weniger wichtig	wenn möglich, dann erheben

2.4 Vergleich der Modellparameter

In der Tabelle 4 sind die wichtigsten Modellparameter des Moduls BAUWERK für die verschiedenen Kantone für das Bezugsjahr 2018 und für die Jahre 2015 und 2016 aufgeführt. Die unterschiedlichen Raten im Hochbau widerspiegeln die Intensität der Bautätigkeit in den einzelnen Kantonen. Im Kanton Aargau lagen die geschätzten Neubauraten im Jahr 2018 mit Werten von 2.35% (Wohnen) und 2.15% (Nicht-Wohnen) auf einem hohen Niveau. Auch im Kanton Zug bewegte sich die Bautätigkeit noch immer über 2%. Sie ist im Vergleich zum Jahr 2016 jedoch zurückgegangen. Die Realisierung von grossvolumigen Bauprojekten wirken sich in diesem Kanton relativ stark auf die Neubaurate aus. In den anderen Kantonen bewegen sich die Neubauraten für den Bereich «Wohnen» mit 1,33% (BE) bis 2.00% (SG) innerhalb einer recht grossen Spannweite. Der Vergleich mit den Daten der Jahre 2015 und 2016 zeigt, dass die Neubauraten insgesamt uneinheitliche Tendenzen aufweisen. Somit ist auch auf der überregionalen Ebene eher von einer neutralen baukonjunkturellen Entwicklung auszugehen. Die Sanierungs- und Rückbauraten weisen ebenfalls keine einheitlichen Tendenzen auf.

Tabelle 4: Vergleich der verwendeten Modellparameter mit den Parametern der Vorjahre, welche im Modul BAUWERK eingesetzt wurden, um die Materiallager und –flüsse des Prozesses Bauwerk zu bestimmen.

-	AG	AG	AG	DE	BE	BE		LU	LU	SG	SG	SG	so	SO		SZ	SZ	TG	TG	TG	ZG	ZG	ZG	ZH	ZH	ZH
				BE			LU			• •					SO											
	2015	2016	2018	2015	2016	2018	2015	2016	2018	2015	2016	2018	2015	2016	2018	2016	2018	2015	2016	2018	2015	2016	2018	2015	2016	2018
Veränderung Hochbau (Gebäude)																										
Wohnen (EFH und MFH)																										
Neubaurate in % des Bestandes	1.78	1.95	2.35	1.72	1.82	1.33	2.05	2.25	1.75	1.78	1.77	2.00	1.70	1.48	1.52	1.90	1.69	1.70	1.73	1.75	1.65	2.69	2.25	1.47	1.75	1.68
Sanierungsrate in % des Bestandes	3.70	3.70	4.25	4.40	3.40	4.85	4.85	4.85	4.80	4.28	4.28	4.28	4.25	4.50	4.75	4.50	5.00	4.35	4.50	4.60	4.45	4.45	4.80	4.55	4.55	5.05
Rückbaurate in % des Bestandes	0.12	0.12	0.16	0.21	0.13	0.34	0.35	0.36	0.42	0.27	0.27	0.18	0.18	0.20	0.17	0.35	0.67	0.15	0.35	0.33	0.45	0.25	0.36	0.30	0.30	0.35
Nicht-Wohnen (restliche)																										
Neubaurate in % des Bestandes	1.75	1.79	2.15	1.95	1.66	1.30	2.25	2.20	1.72	1.69	1.63	1.93	1.55	1.40	1.33	1.55	1.45	1.65	1.63	1.61	1.55	2.45	2.31	1.53	1.57	1.35
Sanierungsrate in % des Bestandes	6.80	6.80	7.05	6.80	5.80	7.40	7.80	7.80	7.90	7.50	6.80	6.35	6.80	6.80	6.53	7.50	7.50	7.80	7.80	7.80	7.80	6.80	7.20	7.90	6.80	6.80
Rückbaurate in % des Bestandes	0.15	0.10	0.13	0.20	0.10	0.35	0.40	0.40	0.46	0.41	0.35	0.20	0.28	0.20	0.18	0.45	0.63	0.25	0.25	0.25	0.62	0.23	0.31	0.65	0.27	0.34
Veränderung Tiefbau (Infrastruktur)																										
Erneuerungsraten																										
Kies/Sand in % des Bestandes	0.45	0.35	0.20	0.35	0.40	0.26	0.60	0.60	0.15	0.45	0.55	0.70	0.15	0.53	0.53	0.50	0.50	0.20	0.20	0.20	0.31	0.60	0.60	0.21	0.21	0.45
Belag in % des Bestandes	1.20	1.20	1.20	2.00	2.00	1.60	1.50	1.50	1.50	1.40	1.40	1.40	1.95	1.50	1.50	1.70	1.80	1.10	1.10	1.10	1.50	1.50	1.50	2.00	2.00	2.00
Beton in % des Bestandes	0.50	0.50	0.50	0.50	0.50	0.70	1.00	1.00	0.80	0.49	0.49	0.49	0.53	0.53	0.53	0.40	0.40	0.45	0.45	0.45	0.80	0.50	0.50	0.55	0.55	0.55
Mauerwerk in % des Bestandes	1.15	1.15	1.15	0.80	0.80	0.95	0.50	0.50	0.50	0.96	0.96	0.96	0.90	0.90	0.90	0.80	0.80	1.24	1.24	1.24	0.85	0.85	0.85	0.65	0.65	0.65
Mineral. Fraktion in % des Bestandes	1.20	1.20	1.20	1.60	1.60	1.60	1.53	1.53	1.53	1.56	1.56	1.56	1.55	1.55	1.55	1.53	1.53	1.65	1.65	1.65	1.35	1.35	1.35	1.53	1.53	1.53
NeubauratNeubaurate in % des Bestandes	1.36	1.25	1.75	1.00	1.08	1.06	1.52	1.50	1.50	1.20	1.15	1.44	0.85	0.70	0.66	0.94	0.91	0.95	0.68	0.85	0.90	1.27	1.03	0.70	1.05	1.28
Grossprojekte																										
Anfall Aushub in 1000m ³ fest	-		-	150	-	260	-	-	-	-	125	125	-	-	-	-	11		-		125	-	100	370	500	550

Mit Hilfe dieser Parameter werden im Modul BAUWERK die Materiallager und –flüsse des Prozesses BAUWERK berechnet. Ausgehend von den nun quantifizierten drei Materialflüssen «Baustoffbedarf», «Rückbaumaterialanfall» und «Aushubmaterialanfall» werden im Modul STOFFFLUSSANALYSE die weiteren systemrelevanten Materialflüsse modelliert.

In der Tabelle 5 ist eine Auswahl von verwendeten Modellparametern, welche im Modul STOFFFLUSSANALYSE verwendet wurden, aufgeführt. Die Angaben zu den Importen und Exporten basieren auf Angaben der Kantone und weiteren Abschätzungen. Die Daten wurden mittels Input-Output-Tabellen und Ausgleichsrechnungen berechnet.

Es ist gut zu erkennen, dass sich die Materialflüsse deutlich unterscheiden können. Wie bereits in den vorangegangenen Jahren exportiert der Kanton Zürich Aushubmaterial von knapp 1.3 Mio. Kubikmetern Festmass in die umliegenden Kantone. Dies entspricht in etwa der Summe der Aushubexporte aller anderen Kantone (1.35 Mio. m³). Die Kantone Aargau und Bern exportieren sehr grosse Mengen an weiteren primären Baustoffen. Es handelt sich dabei vor allem um Kalk/Mergel in Form von Klinker, respektive Zement aus der Zementproduktion. Beim Vergleich der Verwertungsanteile (siehe Definition unterhalb Tabelle 5) fällt auf, dass die Anteile mit Ausnahme des Mischabbruchs nicht stark voneinander abweichen. Beim Mischabbruch liegen

die Verwertungsanteile in den Kantonen Bern und Solothurn im Vergleich zu den anderen Kantonen deutlich tiefer.

Tabelle 5: Vergleich von ausgewählten Modellparametern, welche im Modul STOFFFLUSSANALYSE für das Bezugsjahr 2016 eingesetzt wurden, um die Materialflüsse im System zu modellieren.

			Einheit	AG	BE	LU	SG	SZ	SO	TG	ZG	ZH
Importe												
	A02	Import Rückbaumaterial (in Triage)	m³ fest	23'018	17'835	47'875	34'920	11'274	13'311	19'188	24'142	44'760
	A05	Import Aushub	m3 fest	1'177'801	230'604	147'200	205'349	56'044	240'000	121'614	324'103	185'361
	A08	Import Kies / Sand	m3 fest	302'667	155'001	664'100	838'667	159'286	252'113	530'000	228'334	740'130
	A010	Import weitere Baustoffe	m³ fest	68'000	65'000	143'000	65'000	51'000	50'000	56'000	55'000	397'000
Exporte	A20	Export Rückbaumaterial		27'676	5'969	69'834	25'000	28'315	27'978	30'413	7'137	67'144
	A40	Export RC-Granulate (aufbereitet)	m3 fest	10'000	5'000	30'000	17'000	3'000	10'000	10'000	5'000	25'000
	A50	Export Aushub	m³ fest	286'184	188'462	210'000	125'000	130'000	150'489	133'506	101'679	1'252'692
	A80	Export Kies / Sand	m3 fest	404'000	203'570	155'610	178'994	95'001	207'018	74'812	200'915	837'426
	A100	Export weitere Baustoffe	m³ fest	670'000	633'000	45'000	78'000	41'000	62'000	75'000	-	-
Innere Flüsse	A24	Rückbaumaterial in Aufbereitung (geschätzter Verwertungsante	ail der Material	Ausgeich	Ausgeich	Ausgeich	Ausgeich	Ausgeich	Ausgeich	Ausgeich	Ausgeich	Ausgeich
	724	Betonabbruch: Verwertungsanteil in % (1)	%	94	85 85	90	91	95	93	95	95	96
		Mischabbruch: Verwertungsanteil in % (1)	%	84	45	68	80	88	70	73	85	96 85
		Strassenaufbruch: Verwertungsanteil in % (1)	%	95	88	90	90	95	95	90	92	95
		Ausbauasphalt: Verwertungsanteil in % (1)	%	93	85	90	92	95	90	92	90	93
	A29	Direkte Verwertung (nur Tiefbau)	%	60	30	32	40	35	35	48	50	40
	A43	Anteil Feinfraktion bzgl. Input in Bauschuttaufbereitung	%	1.0	3.0	3.0	4.8	2.0	5.0	5.0	3.0	2.5
	A49	Aufbereitete RC-Baustoffe für Bauwerk	m³ fest			Dieser Mate	rialfluss wire	d im Modell b	erechnet			
	A51	Anteil für Terrainanpassung bzgl. Aushubanfall aus Bauwerk	%	3.0	7.1	4.5	6.1	3.5	5.2	17.3	0.2	5.6
	A56	Ablagerung Aushub	m3 fest			Dieser Mate	rialfluss wire	d im Modell b	erechnet			
	A58	Anteil kiesiger Aushub in Aufbereitung bzgl. Aushubanfall	%	4.4	7.1	2.7	5.3	4.3	4.0	1.1	13.9	3.5
	A78	Abbau Kies / Sand	m3 fest			Dieser Mate	rialfluss wire	d im Modell b	erechnet			
	A86	Anteil Feinfraktion aus Kiesaufbereitung	%	1.1	4.8	9.0	2.0	4.6	10.0	3.0	27.6	3.0
	A53.A	Aushub auf Typ A	m³ fest	324'000	271'000	587'300	643'000	83'568	-	388'000	-	-
	A53.B	Aushub auf Typ B	m³ fest	22'000	223'000	75'000	94'000	13'000	41'200	113'600	12'000	182'500
	A512	Aushub in weitere Abbaustellen	m3 fest	465'000			55'000	147'000	19'100	300		

(1) Bemerkung: Die angegebenen Verwertungsanteile unter dem Materialfluss A24 (Rückbaumaterialien in die Aufbereitung) sind wie folgt definiert:

Verwertungsanteil in % = A24 / (A12 + A02 - A20 - A29) * 100%

3 Resultate

Die Resultate aus den Modellierungen der Materialflüsse der einzelnen Kantone für das Bezugsjahr 2018 liegen für jeden der teilnehmenden Kantone in Form von grafischen Darstellungen und Tabellen vor. Nachfolgend werden die Resultate aus den Modellierungen als Quervergleiche zwischen den Kantonen präsentiert. Im Zentrum stehen dabei vor allem die überbzw. interregionalen Aspekte.

3.1 Baustoffbedarf, Aushub- und Rückbaumaterialanfall

Der Baustoffbedarf bewegte sich in den Kantonen BE, SO, SZ, TG, ZG und ZH gegenüber dem Jahr 2016 in einem relativ engen Bereich von ±7%. Im Kanton Luzern reduzierte sich der Baustoffbedarf um immerhin 13.3%. In den Kantonen AG und SG ist jedoch eine erhebliche Zunahme von +25% bzw. +10% zu verzeichnen, was auf eine verstärkte Bautätigkeit in diesen Kantonen gegenüber dem Jahr 2016 hinweist.

In diesen Kantonen ist auch ein erhöhter Aushubanfall von +6.3% (AG) und +11.2% (SG) zu verzeichnen. Die Zunahmen fallen jedoch geringfügiger als beim Baustoffbedarf aus. Bei vielen Kantonen hat der Aushubanfall gegenüber dem Jahr 2016 abgenommen, obwohl in einigen dieser Kantone der Baustoffbedarf zugenommen hat (SZ, TG und ZH). Eventuell zeigen hier Massnahmen, wie die vermehrte Verwertung von kiesigem Aushub Wirkung. Auch über die gesamte Region gesehen, ist etwas weniger Aushub angefallen als im Jahr 2016.

Tabelle 6: Modellierter Baustoffbedarf (inkl. Rückbaustoffe), Aushub- und Rückbaumaterialanfall in den verschiedenen Kantonen und der gesamten Region in den Jahren 2016 und 2018, sowie die prozentuale Zu-/Abnahme im Vergleich zum Vorjahr. Angaben in 1'000m³ fest.

Kanton	Baustoff in 1000 r		Abweich. zu 2016	Aushub in 1000 r		Abweich. zu 2016	Rückbau in 100	. Abweich. zu 2016	
	2016	2018	in %	2016	2018	in %	2016	2018	in %
AG	2'541	3'187	+25.4	2'664	2'832	+6.3	437	460	+5.2
BE	3'606	3'397	-5.8	2'786	2'829	+1.5	868	1'032	+18.8
LU	1'790	1'550	-13.3	1'187	1'114	-6.2	462	396	-14.3
SG	1'707	1'878	+10.0	1'280	1'426	+11.2	420	380	-9.5
SO	858	855	-0.4	778	711	-8.6	271	267	-1.3
SZ	537	564	+5.1	594	581	-2.2	166	205	+23.3
TG	969	1'022	+5.4	1'094	998	-8.7	265	267	+0.9
ZG	513	478	-6.8	663	597	-10.0	106	119	+12.4
ZH	4'276	4'437	+3.8	4'815	4'274	-11.2	960	1'191	+24.0
Total	16'798	17'367	+3.4	15'861	15'362	-3.1	3'956	4'318	+9.2

Beim Rückbaumaterialanfall sind die Veränderungen deutlich stärker ausgeprägt als bei den vorgenannten Materialkategorien. Die Bandbreite liegt zwischen -14.3% (LU) und + 24% (ZH). In drei Kantonen fiel weniger Rückbaumaterial an als im Jahr 2016 (LU, SG und SO). In den anderen sechs Kantonen sind teilweise erhebliche Zunahmen zu verzeichnen. Somit resultiert über die gesamte Region betrachtet eine Zunahme des Rückbaumaterialanfalls von immerhin 9.2%. Diese liegt deutlich über der Zunahme beim Baustoffbedarf.

3.2 Materialflüsse über die Kantonsgrenzen

In den Abbildungen 2 bis 4 sind die kantonsübergreifenden Materialflüsse, welche auf den Input-Output-Analysen basieren, getrennt nach den Materialien Kies, Aushub- und Rückbaumaterial, dargestellt. Die Exportflüsse sind jeweils gleich eingefärbt wie die Farbe der Kantonsflächen. Zur besseren Nachvollziehbarkeit ist die Summe der Importe und Exporte für jeden Kanton und für die gesamte Region (links oben) jeweils separat angegeben.

3.2.1 Kiesflüsse über die Kantonsgrenzen

Der Austausch von Kies zwischen den Kantonen als auch über die Region hinaus ist nach wie vor sehr intensiv (Abbildung 2). Die gesamte Region importierte im Jahr 2018 rund 1.8 Mio. Kubikmeter und exportierte knapp 0.3 Mio. Kubikmeter Kies. Der Nettoimport von rund 1.5 Mio. Kubikmeter Kies in die Region ist vor allem auf die Kiesimporte aus den Nachbarländern Frankreich, Deutschland und Österreich in die Kantone AG, ZH, TG und SG zurückzuführen. Die grössten Nettoimporteure innerhalb der Region sind die Kantone Thurgau (rund 455'000 m³; 2016: 393'000 m³) St. Gallen, (660'000 m³; 2016: 459'000 m³) und der Kanton Luzern (508'000 m³; 2016: 527'000 m³). Der Kanton Schwyz weist im Jahr 2018 ebenfalls einen Nettoimport von 64'000 m³ auf, während die Kantone Aargau und Zürich Nettoexporteure von Kies im Umfang von rund 100'000 m³ Kies waren. Die Kantone BE, SO und ZG weisen relativ ausgeglichene Bilanzen auf (Nettoimporte/-exporte <50'000m³).

3.2.2 Aushubmaterialflüsse über die Kantonsgrenzen

Die Kies- und Aushubtransporte per LKW sind zur Optimierung der Transportlogistik oftmals gekoppelt. Somit resultiert ein entsprechender Austausch von Aushubmaterial zwischen den Kantonen (Abbildung 3). Auffallend sind noch immer die sehr grossen Materialflüsse über die Kantonsgrenze des Kantons Zürich. Mit einem Exportvolumen von 1.25 Mio. Kubikmetern (2016: 1.33 Mio. m³) wurde im Jahr 2018 nochmals etwas weniger Aushubmaterial exportiert als im Jahr 2016. Mehr als zwei Drittel, d.h. 883'000 m³ (2016: 594'000 m³) des exportierten Aushubvolumens des Kantons Zürich gelangte in den Kanton Aargau. Die erhebliche Zunahme dieses Exportstromes gegenüber dem Jahr 2016 ist vor allem auf das zusätzlich anfallende Ausbruchmaterial aus dem Bau der dritten Röhre des Gubristtunnels zurückzuführen. Die Aushubexporte aus dem Kanton Zürich in die weiteren Nachbarkantone haben im Vergleich zum Jahr 2016 tendenziell etwas abgenommen. Die Kantone Aargau und Zug weisen noch immer hohe Nettoimporte von rund 900'000m3 bzw. 220'000 m3 auf. Die Kantone St.Gallen und Solothurn weisen ebenfalls recht hohe Nettoimporte im Umfang von 70'000 m³ (2016: 112'000 m³) und 90'000 m³ (2016: 148'000 m³) auf, währenddessen die Kantone LU und SZ netto rund 60'000 m³ bzw. 74'000 m³ exportierten. Die Kantone BE und TG weisen relativ ausgeglichene Bilanzen auf.

3.2.3 Rückbaumaterialflüsse über die Kantonsgrenzen

Die Rückbaumaterialflüsse Abbildung 4 über die Kantonsgrenzen sind deutlich geringer als beim Kies und Aushubmaterial. Da die Bauschuttaufbereitungsanlagen oftmals in der Nähe von dichtbesiedelten Räumen stehen, bewegt sich der Austausch über die Kantonsgrenzen hinweg

auf tiefem Niveau. Die meisten Import- und Exportflüsse basieren sehr auf groben Schätzungen und weisen entsprechende Unsicherheiten auf.

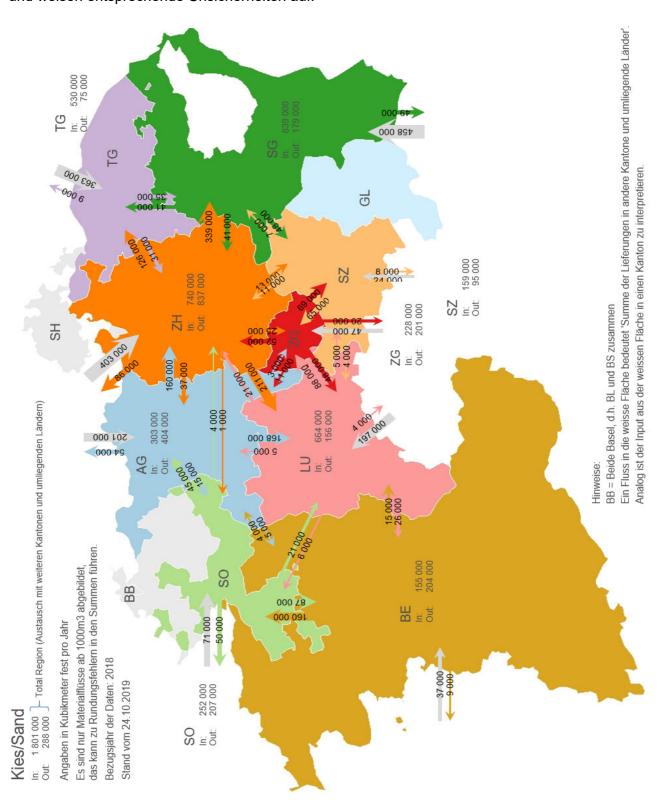


Abbildung 2: Kiesflüsse über die Kantonsgrenzen im Jahr 2018. Die Werte unterhalb der Kantonsbezeichnungen bzw. unter dem Grafiktitel «Kies» entsprechen jeweils der Summe der Importe und Exporte.

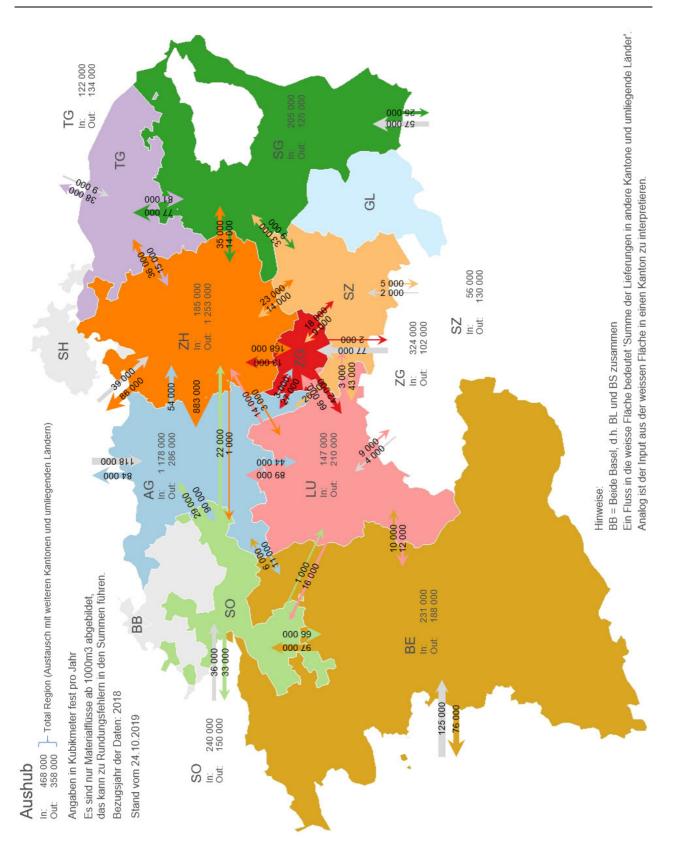


Abbildung 3: Aushubmaterialflüsse über die Kantonsgrenzen im Jahr 2018. Die Werte unterhalb der Kantonsbezeichnungen bzw. unter dem Grafiktitel «Aushub» entsprechen jeweils der Summe der Importe und Exporte.

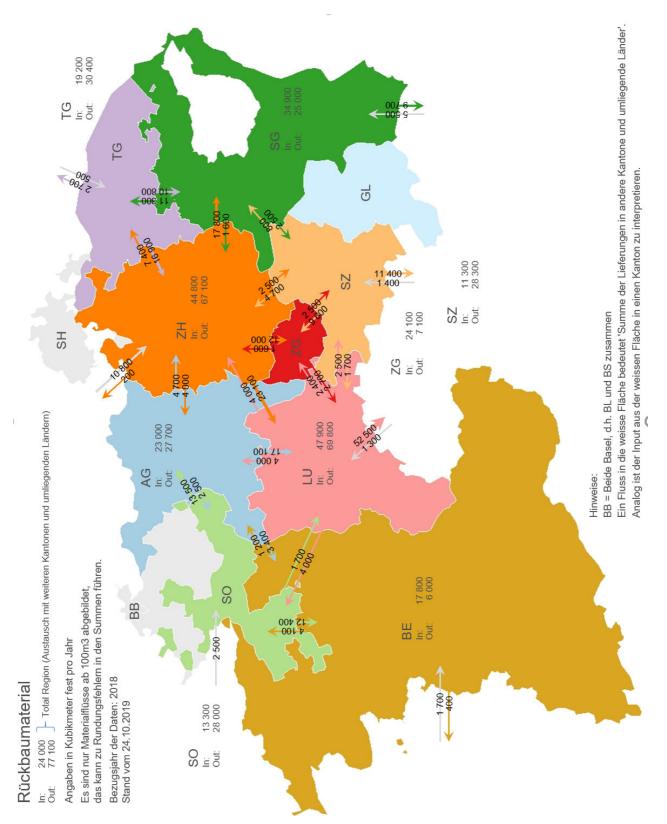


Abbildung 4: Rückbaumaterialflüsse über die Kantonsgrenzen im Jahr 2018. Die Werte unterhalb der Kantonsbezeichnungen bzw. unter dem Grafiktitel «Rückbaumaterial» entsprechen jeweils der Summe der Importe und Exporte.

3.3 Autarkiegrad bezüglich der Baustoffversorgung und Aushubentsorgung

Ein wichtiger Indikator zur Beurteilung der regionalen Rohstoffversorgung und der Materialentsorgung ist der Autarkiegrad. Aus den Modellresultaten lässt sich der Autarkiegrad in Bezug
auf die regionale Baustoff- bzw. Kiesversorgung sowie auf die Aushubentsorgung mittels der
entsprechenden Formeln¹ ableiten. Dabei ist zu bemerken, dass die Kantonsgrenzen zur
Beurteilung der Autarkiegrade bei der Baustoffversorgung und Entsorgung nicht der Realität
entsprechen, da die Ver- und Entsorgung regional und in den jeweiligen Wirtschaftsräumen
erfolgt. Da die Abbau- und Deponieplanungen jedoch auf kantonaler Basis erfolgen, geben die
Autarkiegrade einen gewissen Hinweis auf die Situation in den jeweiligen Kantonen. Nachfolgend
wird auf die Autarkiegrade in den Kantonen bezüglich der Baustoff- bzw. Gesteinskörnungsversorgung und der Aushubmaterialentsorgung eingegangen.

Baustoffversorgung bzw. Versorgung mit mineralischen Gesteinskörnungen

In der Abbildung 5 sind die Autarkiegrade für den Zeitraum 2014 - 2016 und für das Jahr 2018 dargestellt. Im Modell lassen sich die Kiesflüsse und die weiteren mineralischen Baustoffflüsse ab dem Bezugsjahr 2016 getrennt voneinander modellieren. Damit kann der Autarkiegrad in Bezug auf die gesamte mineralische Gesteinskörnung (Kies + RC-Gesteinskörnungen) dargestellt werden. Diese Umstellung führt bei einigen Kantonen zu Unterschieden beim Vergleich der Autarkiegrade mit den Vorjahren. So liegen diese nun in den Kantonen Aargau², Bern² und Solothurn² in den Jahren 2016 und 2018 (gepunktete Säulen) deutlich tiefer als in den Jahren 2014 und 2015, da in diesen Kantonen der Kalk- und Mergelabbau für die Zementproduktion sowie teilweise auch der Ton- und Gipsabbau nicht mehr mit einbezogen ist. Dafür ist nun die Vergleichbarkeit zwischen den Kantonen für die Bezugsjahre 2016 und 2018 gewährleistet. In den Kantonen AG, BE, SO und ZH liegen die Autarkiegrade im Jahr 2018 im Bereich von 100%. Demgegenüber bewegen sich in den Kantonen LU, SG und TG die Autarkiegrade mit 50% - 63% auf deutlich tieferen Niveaus. Zudem nimmt in den Kantonen SG und TG der Autarkiegrad tendenziell noch immer ab. Die tiefen Werte in diesen beiden Kantonen sind auf die starken Kiesimporte aus den grenznahen Abbaustellen in Deutschland und Österreich zurückzuführen. Der Kanton Luzern weist noch immer einen tiefen Autarkiegrad auf. Es ist davon auszugehen, dass sich die Situation in diesem Kanton in den kommenden Jahren verbessern wird, falls die Kiesabbauvorhaben bewilligt werden können. Im Kanton Zug variiert die jährliche Veränderung des Autarkiegrades relativ stark zwischen 94% und 132%. Aufgrund der geringen Fläche des Kantons wirken sich Veränderungen bei den Importen und Exporten relativ stark auf den Autarkiegrad aus. Im Kanton Schwyz hat sich der Autarkiegrad im Vergleich zu 2016 kaum verändert. Er liegt nun bei 88%.

Formel → Autarkiegrad Baustoffe (bis 2015) = (Abbau Primärmaterial – Feinfraktion aus Primärmaterialabbau + RC-Baustoffe + direkte Verwertung RC-Baustoffe + aufbereiteter kiesiger Aushub)/Baustoffbedarf x 100%.

Formel → Autarkiegrad min. Gesteinskörnung (ab 2016) = (kiesig. Aushub + Kiesabbau - FF Kiesabbau + RC-Granul. + Rc direkte Verw.)/(Kies aus Aufber. + RC-Granul. + Rc direkte Verw.) x 100%.

Formel → Autarkiegrad Aushubentsorgung = (1 - (Aushubexport - Aushubimport)/Anfall Aushub) * 100%.

² Bei den Kantonen Aargau, Bern und Solothurn sind bis zum Bezugsjahr 2015 auch die Baustoffe Kalkstein, Mergel und Tonmineralien enthalten. Ab dem Bezugsjahr 2016 bezieht sich der Autarkiegrad auf die mineralische Gesteinskörnung (Kies + RC-Gesteinskörnungen).

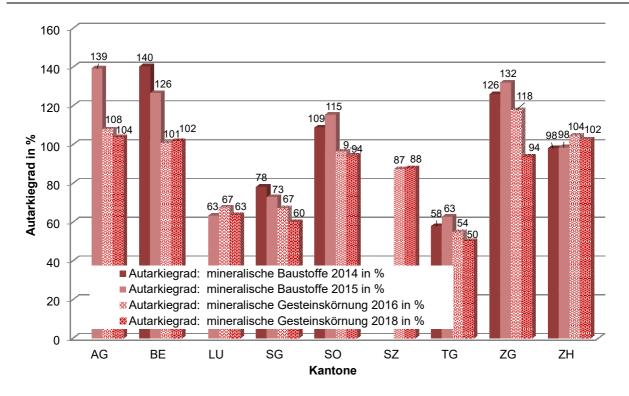


Abbildung 5: Regionale Autarkiegrade in Bezug auf die Versorgung mit mineralischen Baustoffen bzw. mineralische Gesteinskörnung für die Bezugsjahre 2014 – 2016 und 2018. Angaben in Prozenten.

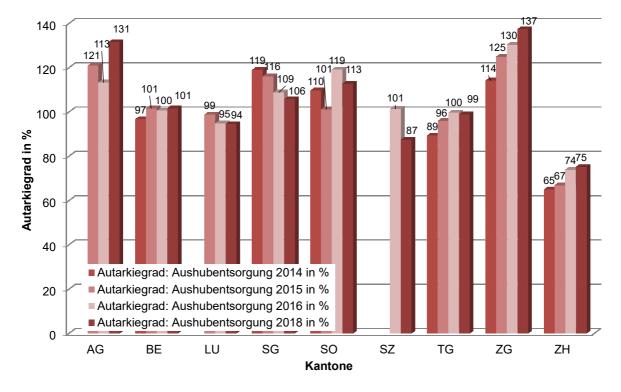


Abbildung 6: Regionale Autarkiegrade in Bezug auf die Aushubentsorgung für die Bezugsjahre 2014 – 2016 und 2018. Angaben in Prozenten.

Aushubentsorgung

Bei der Aushubentsorgung haben sich die Autarkiegrade gegenüber den Vorjahren mit Ausnahme des Kantons Aargau nicht sehr stark verändert (Abbildung 6). Bis auf den Kanton Zürich und neu auch den Kanton Schwyz bewegen sich die Autarkiegrade in allen Kantonen im Bereich von 100% (BE, LU, TG) oder darüber (SG, SO). Im Kanton Zug steigt der Autarkiegrad stetig. Er liegt nun bei 137%. Auch im Kanton Zürich steigt der Autarkiegrad im betrachteten Zeitraum stetig an. Mit 75% verbleibt er jedoch noch immer auf tiefem Niveau. Der Anstieg des Autarkiegrades im Kanton Aargau von 113% auf 131% ist auf die bereits im Kapitel 3.2.2 erwähnte Annahme von Ausbruchmaterial aus dem Gubristtunnel zurückzuführen.

3.4 Ausgewählte Materialflüsse auf pro-Kopf-Basis

In der Abbildung 7 ist der Baustoffbedarf sowie der Aushub- und Rückbaumaterialanfall auf pro-Kopf-Basis für das Jahr 2018 dargestellt. Der pro-Kopf-Baustoffbedarf bewegt sich im Bereich von 2.9 – 4.7 m³/Einwohner. Der Höchstwert wird im Kanton Aargau aufgrund der intensiven Bautätigkeit erreicht (siehe Tabelle 4). In den Kantonen SG, LU, SZ und ZG bewegt sich der pro-Kopf-Baustoffbedarf mit 3.6 - 3.8 m³/Einwohner im gleichen Bereich. In den Kantonen BE, SO und ZH liegen die pro-Kopf-Werte mit 2.9 - 3.3 m³/Einwohner rund 20% tiefer, was mit der geringeren Bautätigkeit in diesen Kantonen zu erklären ist.

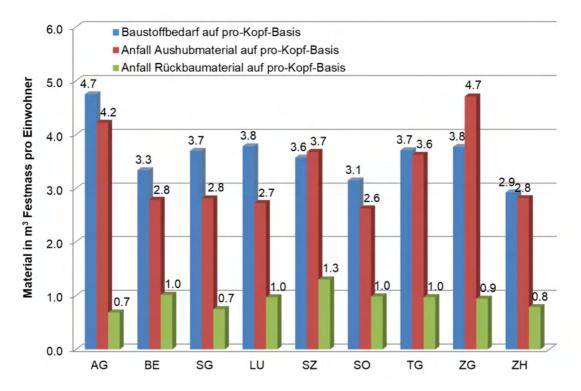


Abbildung 7: Vergleich des Baustoffbedarfs (blaue Säulen), des Rückbaumaterialanfalls (grün) und des Aushubanfalls aus dem Bauwerk (braun) auf pro-Kopf-Basis für das Bezugsjahr 2018 nach Kantonen. Die Werte sind in Kubikmetern fest pro Einwohner angegeben.

Beim Aushubanfall aus dem Bauwerk liegt die Bandbreite zwischen $2.6-4.7~\text{m}^3$ /Einwohner. Im Kanton Zug wird mit $4.7~\text{m}^3$ /Einwohner der höchste pro-Kopf-Aushubanfall erreicht. Die Veränderungen bei den pro-Kopf-Werten gegenüber dem Bezugsjahr 2016 sind mit Ausnahme der Kantone ZG und TG bei allen Kantonen relativ gering ($\pm 0.4~\text{m}^3$ /Einwohner). Im Kanton

Thurgau reduzierte sich der Aushubanfall um -0.5 m³/Einwohner und im Kanton Zug um -0.7 m³/Einwohner.

Die pro-Kopf-Werte für die Rückbaustoffe haben leicht zugenommen und liegen im Bereich von zwischen $0.7 - 1.3 \text{ m}^3/\text{Einwohner}$ (2016: $0.6 - 1.1 \text{ m}^3/\text{Einwohner}$).

Mit Ausnahme der Kantone SZ und ZG übertreffen die pro-Kopf-Werte des Baustoffbedarfs jene des Aushubmaterialanfalls (Abbildung 7). Dies trifft jedoch nicht zu, wenn der Kies-/Sandabbau mit dem Aushubmaterialanfall verglichen wird (Abbildung 8). Hier liegen die pro-Kopf-Wert des Kies-/Sandabbaus meistens deutlich niedriger als jene des Aushubmaterialanfalls. Die teilweise grossen Unterschiede sind auf die Rückführung der RC-Granulate in die Baustoffproduktion zurückzuführen, welche mittelweile einen Anteil von 20 – 30% am Baustoffbedarf einnehmen (Tabelle 7). Zudem führen die Kiesimporte vor allem in den Kantonen TG und SG zu einem geringeren Kiesabbau. In den Kantonen AG, BE, SO und ZH liegen die Differenzen jeweils im Bereich von 0.6 bis 0.8 m³/Einwohner. Ein grosser Teil dieser Differenz wird durch die Rückführung der RC-Granulate in den Prozess «Baustoffe produzieren» abgedeckt (grüne Säulen in der Abbildung 8). Diese pro-Kopf-Werte liegen zwischen 0.6 – 1.1 m³/Einwohner. Damit kann die Substitution von Kies durch die Rückbaustoffe auf nachvollziehbare Weise dargestellt werden. Ebenfalls erkennbar wird die damit verbundene Problematik des fehlenden Ablagerungsvolumens für Aushubmaterial.

Die pro-Kopf-Werte des Aushubanfalls und der Aushubablagerung liegen bei vier Kantonen relativ nahe beieinander, was sich auch in den entsprechenden Autarkiegraden der Kantone in Abbildung 6 widerspiegelt. Grössere Unterschiede sind insbesondere in den Kantonen AG, ZG, SZ, TG und ZH festzustellen. In den Kantonen AG und ZG liegen die pro-Kopf-Werte des abgelagerten Aushubmaterials rund 1 m³/Einwohner über dem Aushubmaterialanfall. In den Kantonen SZ, TG, ZH ist die Situation umgekehrt. Hier liegt der Aushubmaterialanfall um 0.7 – 0.9 m³/Einwohner höher als das abgelagerte Aushubvolumen, was teilweise mit den hohen Aushubexportvolumen zu erklären ist.

In der Abbildung 9 sind die abgelagerten Aushubmengen aus den Kantonen (grüne Säulen), sowie die Importe (dunkelbraun) und Exporte (hellbraun) dargestellt⁽³⁾. Gut zu erkennen ist, dass insbesondere die Kantone AG, SO und ZG auf pro-Kopf-Basis deutlich mehr Aushubmaterial importieren als exportieren. Umgekehrt ist die Situation in den Kantonen SZ und ZH. Insbesondere im Kanton Zürich wird kaum Aushubmaterial importiert, aber grosse Volumen exportiert. Im Bezugsjahr 2018 fiel im Kanton Zürich zusätzlich noch Ausbruchmaterial aus dem Gubristtunnel an, welches im Kanton Aargau abgelagert wurde. In den anderen Kantonen halten sich die Importe und Exporte von Aushubmaterial in etwa die Waage. Zudem bewegen sich diese im Verhältnis zum pro-Kopf-Wert des abgelagerten Aushubmaterials auf einem deutlich tieferen Niveau.

In der Abbildung 9 ist der Materialfluss von kiesigem Aushubmaterial, welcher zu Kies/Sand aufbereitet wird, nicht enthalten. Dieser Materialfluss ist jedoch in der Abbildung 8 bei der Aushubablagerung (hellbraue Säulen) berücksichtigt.

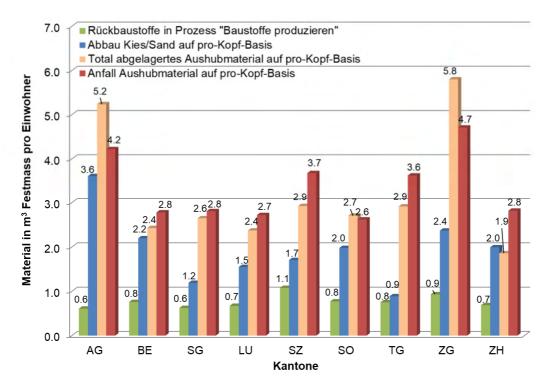


Abbildung 8: Vergleich des Rückbaustoffflusses (grüne Säulen), des Kies-/Sandabbaus (blaue Säulen), der Aushubablagerung (inkl. Ablagerung in weiteren Entnahmestellen, ohne Terrainanpassungen) (hellbraun) und des Aushubanfalls aus dem Bauwerk (rot-braun) auf pro-Kopf-Basis für das Bezugsjahr 2018 nach Kantonen. Die Werte sind in Kubikmetern fest pro Einwohner angegeben.

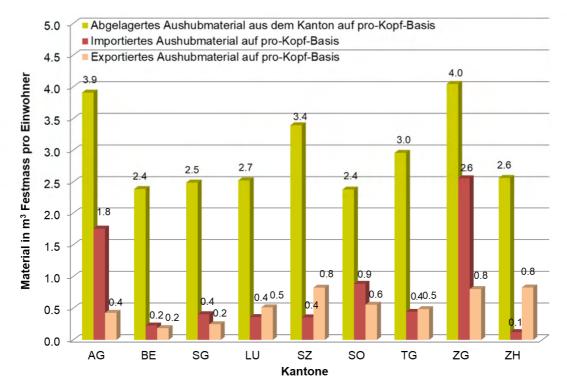


Abbildung 9: Aus den Kantonen stammende Aushubvolumina, die in den Kantonen abgelagert wurden sowie die Aushubimporte- und Exporte auf pro-Kopf-Basis für das Jahr 2018.

3.5 Entwicklung der Materialflüsse bis 2035

In den nachfolgenden Kapiteln sind die zeitlichen Entwicklungen der Materialflüsse bis zum Jahr 2035 (Linien) sowie die erhobenen und modellierten Materialflüsse der einzelnen Jahre (als Säulen) der neun Kantone abgebildet und beschrieben. Die Resultate der Szenarien «Mittel» (ausgezogene Linien in Abbildungen 10 - 12) entsprechen bei allen Kantonen in etwa den ehemaligen Szenarien «Hoch», welche auf den BFS-Szenarien aus dem Jahr 2010 basieren.

3.5.1 Entwicklung des Baustoffbedarfs und des Aushubmaterialanfalls

In der Abbildung 10 sind die mit dem dynamischen Modell gerechneten, szenarioabhängigen Entwicklungen des Baustoffbedarfs und des Aushubanfalls zwischen 2010 und 2035 sowie die Daten aus den Modellierungen der Bezugsjahre 2010 – 2016 und für das neue Bezugsjahr 2018 für die Kantone ZH, BE, AG, LU, SG, TG, SO, SZ und ZG dargestellt. Der Vergleich zeigt, dass der modellierte Baustoffbedarf und Aushubanfall, welcher jeweils auf den jährlichen Erhebungen der Kantone basiert, weiterhin in allen Kantonen gut mit den modellierten Entwicklungen dieser Materialflüsse übereinstimmt. Beim Kanton Thurgau liegt der Aushubanfall etwas weniger deutlich über der modellierten Entwicklung, aus diesem Grund wurde auf eine Modellanpassung verzichtet. Beim Kanton Solothurn liegt der Baustoffbedarf deutlich tiefer als die modellierte Entwicklung. Bei der nächsten Modellierung (Bezugsjahr 2020) werden die Parameter der Dämpfungsfunktion angepasst, so dass die Entwicklung des Baustoffbedarfs sinkende Tendenz aufweisen wird. Beim Kanton Aargau liegen der Baustoffbedarf und der Aushubanfall im Bezugsjahr 2018 deutlich über der modellierten Entwicklung. Bei der nächsten Modellierung ist zu prüfen, ob dies noch immer der Fall ist und ob allenfalls Anpassungen im Modell vorzunehmen sind.

Bei den anderen Kantonen sind keine wesentlichen Änderungen im dynamischen Modell notwendig. Die Resultate zeigen, dass die Modellierung des Bauwerks in den meisten Kantonen in Bezug auf die zeitlichen Entwicklungen der Materialflüsse in das und aus dem Bauwerk nun bereits über einen längeren Zeitraum relativ robuste Resultate liefert.

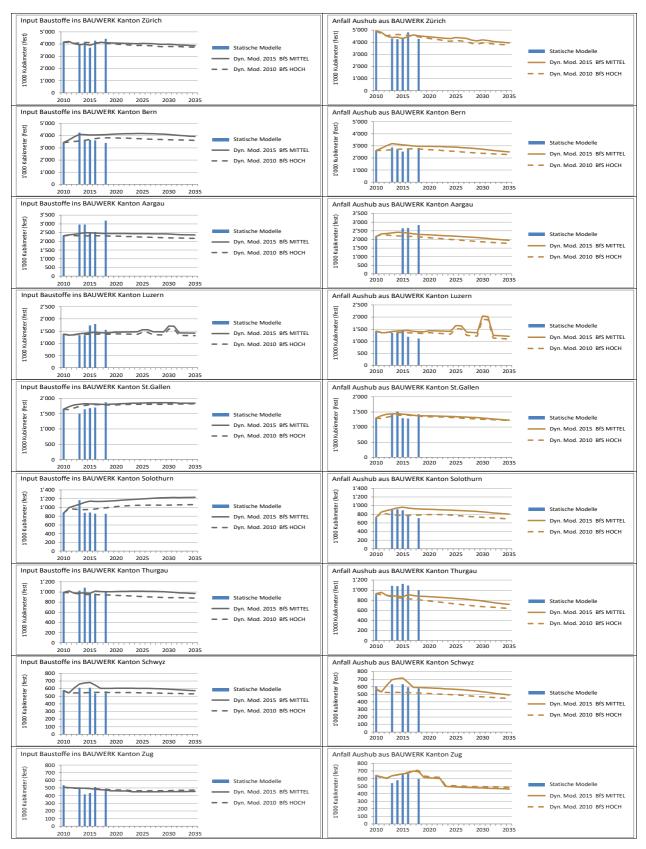


Abbildung 10: Entwicklung des Baustoffbedarfs und des Aushubanfalls in den Kantonen ZH, BE, AG, LU, SG, TG, SO, SZ und ZG zwischen 2010 und 2035 (ausgezogene Linien: Szen. «Mittel, BFS 2015», gestrichelte Linien Szen. «Hoch, BFS 2010»), sowie die Daten aus den Modellierungen der Bezugsjahre 2010, 2013 – 2016 und 2018. Angaben in 1000 m³ fest.

3.5.2 Entwicklung des Primärmaterialabbaus und der Aushubablagerung

Kenntnisse zur künftigen Entwicklung des Abbaus von Primärmaterialien und der Aushubablagerung sind insbesondere für die Planung von Kiesabbaugebieten und immer mehr auch für die Planung von Aushubdeponien von grosser Bedeutung für die Kantone. In der Abbildung 11 sind die zeitlichen Entwicklungen dieser Materialflüsse analog der Abbildung 10 für alle Kantone dargestellt. Auch hier stimmen die in den statischen Modellen gerechneten Werte (dunkelblaue Säulen) sowie die von den Kantonen angegebenen Werte (hellblaue Säulen) zum Primärmaterialabbau und zur Aushubablagerung⁴ in allen Kantonen gut bis sehr gut mit den modellierten Entwicklungen dieser Materialflüsse überein. Gut zu erkennen ist zudem die meistens gute Übereinstimmung der hell- und dunkelblauen Säulen. Dies zeigt, dass die mit dem statischen Modell gerechneten Materialflüsse möglichst nahe an die Werte der von den Kantonen erhobenen Materialflüsse «modelliert» wurden.

Die Achsenskalierungen in den Grafiken zum Primärmaterialabbau und Aushubablagerungen sind jeweils auf die gleiche maximale Höhe eingestellt. Damit können die zeitlichen Entwicklungen dieser Materialflüsse besser miteinander verglichen werden. Die Niveaus von Primärmaterialabbau und Aushubablagerung unterscheiden sich bei den einzelnen Kantonen teilweise deutlich: Im Kanton Bern liegt das Aushubablagerungsvolumen deutlich tiefer als das Abbauvolumen der Primärmaterialien, was teilweise auf den zusätzlichen Abbau von Kalk und Mergel zurückzuführen ist. Dies ist auch beim Kanton Aargau der Fall. Allerdings ist der Unterschied nicht so stark ausgeprägt wie beim Kanton Bern. In den Kantonen Solothurn und Zürich liegt die Aushubablagerung in etwa auf gleicher Höhe wie der Primärmaterialabbau. Während im Kanton Solothurn ebenfalls der Abbau von Kalkgestein und Tonmineralien einen Beitrag zu einer ausgeglichenen Bilanz leistet, sind es im Kanton Zürich die massiven Aushubablagerung führen. Müsste der im Kanton Zürich anfallende Aushub vollständig innerhalb des Kantons abgelagert werden, würde das Aushubablagerungsvolumen deutlich über dem Kiesabbauvolumen liegen.

In den Kantonen Luzern, Thurgau, St.Gallen und Schwyz liegt die Aushubablagerung relativ deutlich über dem Niveau des Primärmaterialabbaus. Diese Kantone importieren im Verhältnis zum Kiesabbau netto relativ viel Kies aus den Nachbarkantonen bzw. aus den Nachbarländern. Die besagten Kantone verfügen zudem über Aushubdeponien, in denen der "Materialüberschuss" abgelagert werden kann. Auch im Kanton Zug, welcher ebenfalls über Aushubdeponien verfügt, liegt die Aushubablagerung aufgrund Nettoimporten von Aushubmaterial über dem Niveau des Primärmaterialabbaus.

Summe aus Aushubmaterialflüssen in die Teil- und Wiederauffüllung von Entnahmestellen «Kiesgruben» und «weitere Primärmaterialien», Deponien Typ A+B.

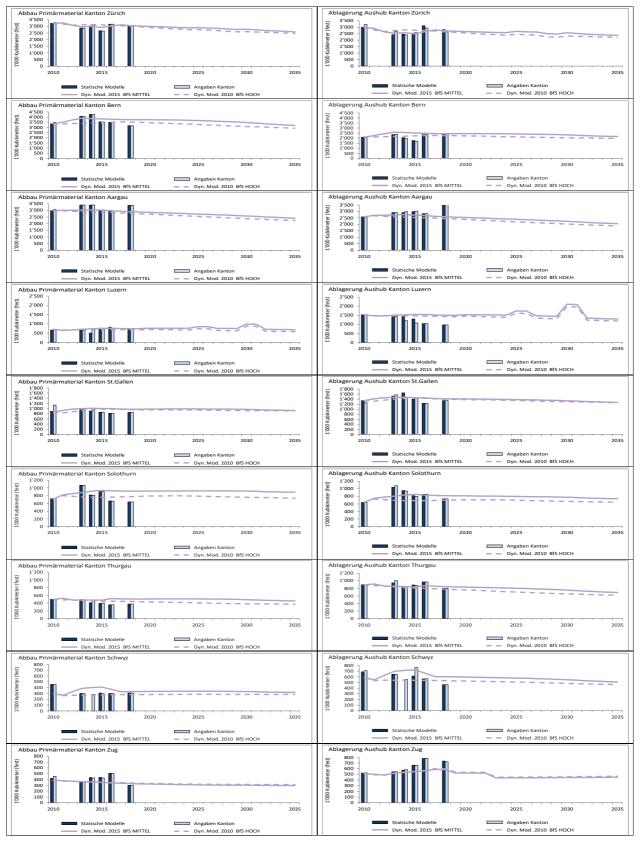


Abbildung 11: Entwicklung des Primärmaterialabbaus und der Aushubablagerung in den Kantonen ZH, BE, AG, LU, SG, TG, SO, SZ und ZG zwischen 2010 und 2035 (ausgezogene Linien: Szen. «Mittel, BFS 2015», gestrichelte Linien Szen. «Hoch, BFS 2010»), sowie die Daten aus den Modellierungen der Bezugsjahre 2010, 2013 – 2016 und 2018. Angaben in 1000 m³ fest.

3.5.3 Kumulierte Differenz zwischen Aushubablagerung und Primärmaterialabbau

In der Abbildung 12 sind die Entwicklungen der jährlichen Differenz "Ablagerung – Abbau" (siehe auch Abbildung 11) und der kumulierten Differenz für die Kantone ZH, BE, AG, LU, SG, TG, SO, SZ und ZG zwischen 2010 und 2035 sowie die Daten aus den Modellierungen der Bezugsjahre 2010, 2013 bis 2016 und für das Jahr 2018 dargestellt. In der jährlichen und kumulierten Differenz nicht, beziehungsweise nur indirekt berücksichtigt, sind die Aushub- sowie Kiesimporte und –exporte. Würden beispielsweise die Aushubimporte im Kanton Zürich in der jährlichen und kumulierten Differenz mit einbezogen, würde ein deutlicher Aushubüberschuss entstehen. Da die jährliche Differenz jeweils aus zwei grossen Zahlen gebildet wird, sind die jährlichen Schwankungen meistens relativ gross. Die Werte der Bezugsjahre sind somit mit relativ grossen Unsicherheiten behaftet. Dennoch stimmen die modellierten Entwicklungen für die Kantone ZH, BE, SG, TG und ZG relativ gut mit den Werten der Bezugsjahre 2013 bis 2016 und 2018 überein.

Der Kanton Solothurn weist sowohl positive als auch negative Werte auf, welche mehr oder weniger stark vom Nullwert abweichen. Die Entwicklung der kumulierten Differenz (Grafik rechts) verläuft deshalb relativ nahe beim Nullwert. Sofern in den kommenden Jahren keine starken Veränderungen stattfinden, ist somit davon auszugehen, dass keine zusätzlichen oder allenfalls nur kleine Aushubdeponien notwendig sind.

In den Kantonen LU, SG, TG, SZ und ZG verlaufen die kumulierten Differenzen in den positiven Bereich. Dies bedeutet, dass die in Abbaustellen geschaffenen Volumen nicht ausreichen, um das anfallende Aushubmaterial dort aufzunehmen. Ein Teil davon muss in Aushubdeponien abgelagert oder entsprechend exportiert werden. Die Kantone ZG und Kanton SZ weisen vor allem Nettoimporte von Aushubmaterial auf. Als Massnahme können zur Reduktion der kumulierten Differenz die Aushubimporte reduziert bzw. die Aushubexporte erhöht werden, was im Kanton SZ im Bezugsjahr 2018 der Fall war. In den Kantonen LU, SG und TG sind hauptsächlich die Kiesimporte für die ansteigende kumulierte Differenz verantwortlich. Diese müssten deshalb stark reduziert werden, um eine ausgeglichenere Bilanz zu erreichen.

In den Kantonen ZH, BE und AG verläuft die kumulierte Differenz in den negativen Bereich. Je nach Kanton sind unterschiedliche Aspekte dafür verantwortlich: Im Kanton Zürich sind es vor allem die massiven Aushubmaterialexporte, welche zu dieser Entwicklung führen. Im Kanton Bern wird, im Vergleich zu anderen Kantonen, mehr Aushubmaterial verwertet und es werden relativ grosse Mengen an weiteren Primärmaterialien abgebaut. Dies führt zu einer im Vergleich zu den anderen Kantonen grossen kumulierten Differenz, welche bis zum Jahr 2025 auf -30 Mio. m³ anwächst. Allerdings war die jährliche Differenz im Bezugsjahr 2018 deutlich kleiner als in den vorangegangenen Jahren. Beim Kanton Aargau sieht es ähnlich aus, jedoch auf deutlich tieferem Niveau. Die kumulierte Differenz erreicht bis 2035 einen Wert von knapp -8 Mio. m³.

Die Entwicklungen der jährlichen und kumulierten Differenzen basieren auf der Annahme, dass sich die heute vorliegenden Abbau- und Entsorgungssituationen in den einzelnen Kantonen in den kommenden Jahren gleich weiterentwickeln. Dies muss nicht unbedingt der Fall sein. So können beispielsweise Auffüllquoten zur Rekultivierung verändert (z.B. im Kanton Zürich in Diskussion), Aushubimporte aus anderen Kantonen reduziert oder bestehende Abbaustellen teilweise wieder aufgefüllt werden. Solche Massnahmen können zu erheblichen Verschiebungen bei der Aushubentsorgung führen, mit entsprechenden Auswirkungen auf die Entwicklung der kumulierten Differenzen.

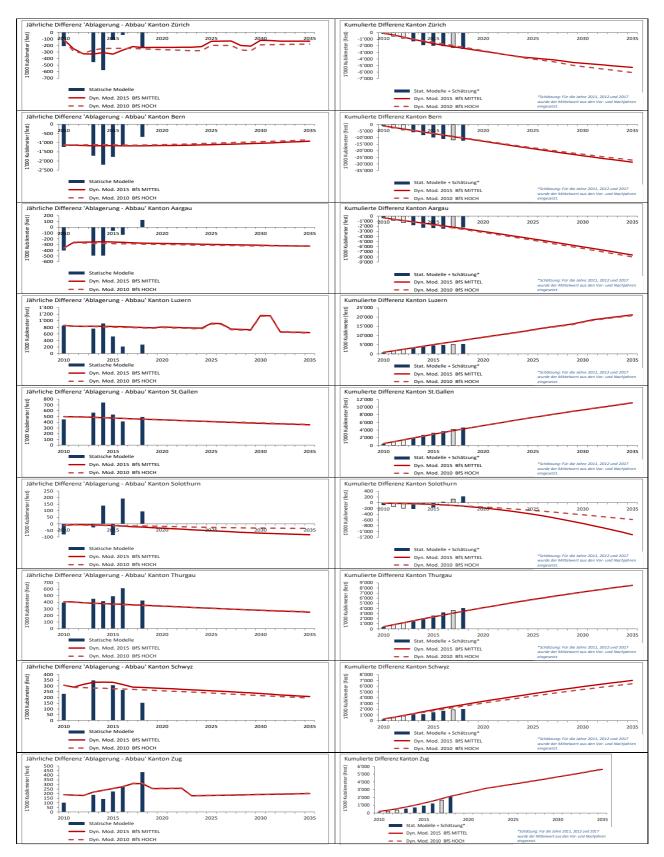


Abbildung 12: Entwicklung der jährlichen Differenz "Ablagerung –Abbau" und die kumulierte Differenz in den Kantonen ZH, BE, AG, LU, SG, TG, SO, SZ und ZG zwischen 2010 und 2035 (ausgezogene Linien: Szen. «Mittel, BFS 2015», gestrichelte Linien Szen. «Hoch, BFS 2010»), sowie die Daten aus den Modellierungen der Bezugsjahre 2010, 2013 – 2016 und 2018. Angaben in 1000 m³ fest.

4 Diskussion und Schlussfolgerungen

4.1 Gesteinskörnungsbedarf und Verwertung der Rückbaustoffe (RBS)

Die durch die Kantone erhobenen Daten und die mit dem Modell berechneten Materialflüsse lassen interessante Vergleiche der wichtigsten Kennzahlen zu und zeigen zudem die Situation über die gesamte Region der neun Kantonen auf. In der Tabelle 7 sind der Gesteinskörnungsbedarf, welcher durch Kies/Sand sowie den Rückbaustoffen gedeckt wird, der Rückbaumaterialanfall inklusive Nettoimporte, die verwerteten Rückbaustoffvolumen sowie die Verhältnisse RBS/RBM (Definition unterhalb Tabelle 7) und die RBS-Anteile am GK-Bedarf für die Kantone AG, BE, LU, SG, SO, SZ, TG, ZG und ZH und die gesamten Region für die Jahre 2016 und 2018 aufgeführt. Die Veränderungen der Materialflüsse und der Verhältnisse im Vergleich zu jenen des Bezugsjahres 2016 bewegen sich für die meisten Kantone in einer relativ engen Bandbreite. Der Gesteinskörnungsbedarf hat in fünf Kanton zu- und in vier Kantonen gegenüber dem Jahr 2016 abgenommen. Insbesondere im Kanton AG ist der Bedarf an Gesteinskörnung aufgrund der regen Bautätigkeit stark angestiegen. Umgekehrt ist die Situation im Kanton LU, dort ist eine relativ starke Abnahme gegenüber 2016 festzustellen. Der GK-Bedarf in der gesamten Region hat sich um rund 1.25 Mio. Kubikmeter auf 15.5 Mio. Kubikmeter reduziert.

Tabelle 7: Gesteinskörnungsbedarf (GK-Bedarf), Anfall von Rückbaumaterial (RBM) inklusive Nettoimporte, total verwertete Rückbaustoffe (RBS) sowie das Verhältnis RBS/RBM und der RBS-Anteil am GK-Bedarf in den Kantonen AG, BE, LU, SG, SO, SZ, TG, ZG und ZH sowie in der gesamten Region im Jahr 2016 und 2018.

Kanton		edarf m³ fest	RBM-Ar in 1000m	_		ustoffe ⁽²⁾)m³ fest	Verhä RBS/RBM		RBS-Anteil am GK-Bedarf in %	
	2016	2018	2016	2018	2016	2018	2016	2018	2016	2018
AG	2'258	2'826	413	455	386	418	93.5	91.8	17.1	14.8
BE	3'193	3'043	886	1044	685	776	77.3	74.4	21.5	25.5
LU	1'606	1'388	463	374	398	305	85.9	81.6	24.8	22.0
SG	1'518	1'643	417	390	376	334	90.2	85.6	24.8	20.3
so	770	763	255	253	217	219	85.0	86.8	28.1	28.7
SZ	484	515	162	188	150	173	92.7	91.9	31.1	33.6
TG	863	910	257	256	223	217	86.9	84.6	25.9	23.8
ZG	451	423	118	136	111	123	94.0	90.3	24.7	29.1
ZH	3'851	4'019	956	1169	882	1065	92.3	91.1	22.9	26.5
Total	16'798	15'529	3'927	4'265	3'428	3'630	87.3	85.1	22.9	23.4

⁽¹⁾ Rückbaumaterialanfall inklusive Nettoimporte/-exporte (RBM) = A12 + A02 - A20 (Bsp.: Fluss A12 = Materialfluss von Prozess 1 nach Prozess 2 → siehe auch Abbildung 1)

Der Rückbaumaterialanfall und die verarbeiteten Rückbaustoffmengen nahmen gegenüber 2016 in den meisten Kantonen und in der gesamten Region leicht zu, was darauf hindeutet, dass sich die Rückbau- und Sanierungstätigkeit leicht erhöht hat. Die Verhältnisse RBS/RBM unterliegen aus verschiedenen Gründen grösseren Schwankungen: Einerseits können sich die Materialqualitäten der Rückbaumaterialien verändern. Rückbaumaterial aus Gebäuderückbauten weisen beispielsweise höhere Qualitäten auf als Rückbaumaterial aus Sanierungen. Hier muss

⁽²⁾ Rückbaustoffe inklusive Exporte und direkte Verwertung (RBS) = A49 + A40 + A29

⁽³⁾ Verhältnis = RBS in 1000m³ / RBM in 1000m³ x 100%

mehr Material in Deponien entsorgt werden. Zudem spielt auch der Deponierungspreis insbesondere beim Mischabbruch eine wesentliche Rolle bezüglich des Entscheides, ob dieser aufbereitet oder deponiert wird. Das RBS/RBM-Verhältnis hat in der gesamten Region von 87.3% auf 85.1% abgenommen, bewegt sich aber noch immer auf einem relativ hohen Niveau. Allerdings sind insbesondere beim Mischabbruch als auch beim Ausbauasphalt aus unterschiedlichen Gründen in einigen Kantonen weitere Anstrengungen notwendig, um die Verwertungsquoten bei diesen Fraktionen zu erhöhen.

In den beiden letzten Spalten der Tabelle 7 sind die RBS-Anteile am GK-Bedarf aufgeführt. Die Verhältnisse haben in fünf Kantonen und in der gesamten Region gegenüber 2016 leicht zugenommen und liegen für die gesamte Region bei einem Anteil von 23.4%. Der Grund hierfür ist die Zunahme des Rückbaumaterialanfalls bei leicht sinkendem GK-Bedarf. Sollte die Neubautätigkeit in den kommenden Jahren etwas zurückgehen, dann dürften die RBS-Anteile weiter ansteigen. Auch wenn die Verwertungsquoten mittels weiterer Anstrengungen und Massnahmen erhöht werden können, steigen die RBS-Anteile weiter an.

4.2 Mineralische Gesteinskörnungen und Aushubentsorgung: Autarkiegrade und Entwicklung

Die Autarkiegrade der mineralischen Gesteinskörnungen haben sich in den meisten Kantonen gegenüber 2016 geringfügig verändert (Abbildung 5). Die Ausnahme bildet der Kanton Zug. Hier hat sich der Autarkiegrad von 118% auf 94% reduziert. Der Hauptgrund hierfür ist die Veränderung bei den Importen und Exporten. Im Jahr 2016 wurden netto rund 80'000 m³ Kies/Sand exportiert. Im Jahr 2018 wurden hingegen netto rund 27000 m³ importiert. Aufgrund der geringen Fläche des Kantons verändern sich die Importe und Exporte relativ schnell und stark, was sich entsprechend auf die Autarkiegrade auswirken kann. Die Kantone AG, BE, SO, ZH und ZG weisen Autarkiegrade im Bereich von 100% auf, was bedeutet, dass sich diese Kantone im Jahr 2018 selbst mit mineralischen Gesteinskörnungen versorgen konnten. Die Kantone LU, SG und TG und im geringeren Ausmass auch der Kanton SZ weisen deutlich tiefere Autarkiegrade auf. Sie liegen bei 63% (LU), 60% (SG), 50% (TG) bzw. 88% (SZ). Der Grund hierfür sind vor allem die Kies- und Betonimporte der Kantone LU und SZ aus ihren Nachbarkantonen oder aus Deutschland und Österreich (in die Kantone TG und SG).

In den meisten Kantonen liegen die Autarkiegrade bei der Aushubentsorgung im Bereich von 100% oder darüber (AG, SG, SO, ZG) (Abbildung 6). Die Ausnahme nach unten bildet, wie in den Vorjahren, der Kanton Zürich, welcher einen Autarkiegrad von 75% im Jahr 2018 erreichte. Es ist jedoch eine zunehmende Tendenz feststellbar. Die jährlichen Autarkiegrade bilden nur die IST-Situation in den Kantonen ab. Längerfristig haben insbesondere Kantone mit hohen Kiesimportanteilen ein Problem bei der Aushubentsorgung, weil zu wenig Volumen zur Wiederauffüllung der Kiesgruben zur Verfügung steht. Dies ist insbesondere in den Kantonen LU, SG und TG der Fall. Dies zeigt auch die Entwicklung der kumulierten Differenz zwischen Aushubablagerung und Primärmaterialabbau in Abbildung 12, welche in diesen Kantonen bis zum Jahr 2035 relativ grosse Werte erreicht. In diesen Kantonen müssen künftig weitere Aushubdeponien geplant werden oder mehr Aushubmaterial in die umliegenden Kantone bzw. angrenzenden Länder exportiert werden.

4.3 Schlussfolgerungen

Die vorliegenden KAR-Modelle von mittlerweile neun Kantonen erlauben eine gesamtheitliche Betrachtung aller relevanten mineralischen Materialflüsse, welche zur Bewirtschaftung des Bauwerks notwendig sind. Die grafischen Darstellungen der Materialflüsse sowie der zeitlichen Entwicklungen der verschiedenen Materialflüsse ermöglichen ein besseres Systemverständnis liefern nachvollziehbare Prognosen zur langfristigen Entwicklung der relevanten Materialflüsse. Inzwischen decken die Rückbaustoffe je nach Kanton bereits knapp 20% bis 30% des Gesteinskörnungsbedarfs der Kantone ab. Dies hat entsprechende Auswirkungen auf die Bewirtschaftung der anderen Materialflüsse. Durch die Substitution von Kies und Sand findet weniger Kiesabbau statt, was wiederum zu einer Reduktion der verfügbaren Auffüllvolumina führt. Die Unternehmen, welche in der Baustoffversorgung bzw. Aushub- und Rückbaumaterialentsorgung tätig sind, stehen vor der Herausforderung, sich diesen Veränderungen zu stellen und dennoch wirtschaftlich erfolgreich zu sein. Da die Rückbaumaterialen nicht mehr deponiert, sondern gemäss der VVEA zu möglichst hohen Anteilen verwertet werden müssen, wird sich der Anteil der Rückbaustoffe am gesamten Gesteinskörnungsbedarf weiter erhöhen. Verschiedene Kantone sind daran, Recyclingbaustoffstrategien zu entwickeln und umzusetzen. Dazu müssen die betroffenen Akteure mit einbezogen werden. Insbesondere die Kies- und Betonproduzenten müssen beispielsweise überzeugt werden, hochwertige RC-Gesteinskörnungen zu produzieren und einzusetzen. Gelingt dies, erkennen oder entwickeln die Produzenten neue Absatzkanäle für die RC-Baustoffe, welche die Umsatzverluste durch den sinkenden Kiesabsatz kompensieren können.

Die Auswirkung verminderter Rekultivierungsvolumen für Aushubmaterial sind bereits heute in vielen Regionen spürbar. Es müssen künftig vermehrt Aushubdeponien geplant werden, um genügend Deponiekapazitäten zur Verfügung stellen zu können. Die Resultate aus der dynamischen Modellierung sollen die Kantone bei der Aushubdeponieplanung unterstützen. Insbesondere die kumulierte Differenz zwischen Ablagerung und Abbau ist ein wichtiges Hilfsmittel, um die Entwicklungen im Bereich der Aushubentsorgung in den einzelnen Kantonen abzuschätzen.

Ausblick

4.4 Nachführung der statischen Modelle

Mittlerweile beteiligen sich die in diesem Bericht erwähnten neun Kantone an der Modellierung der KAR-Materialflüsse in ihren Kantonen. Die nächste Nachführung der Modelle ist für das Bezugsjahr 2020 vorgesehen. Die Kantone Basel-Stadt und Basel-Landschaft haben ebenfalls gemeinsam ein KAR-Modell entwickeln lassen. Dieses Modell wird vermutlich in der Nachführung 2020 ebenfalls in die überregionale Betrachtung mit einbezogen werden.

4.5 Mitwirkung der Verbände

Die beiden Verbände arv Baustoffrecycling Schweiz und FSKB (Fachverband der Schweizerischen Kies- und Betonindustrie) werden sich weiterhin bei der Entwicklung des KAR-Modells beteiligen und in der Begleitgruppe mitwirken. Neben der finanziellen Unterstützung haben sich die beiden Verbände grundsätzlich dafür ausgesprochen, bei Bedarf zusätzliche Datengrundlagen für die Modelle zur Verfügung zu stellen. Damit können die statischen Modelle noch besser validiert werden. Zudem liefern die Verbände wichtige Informationen zu Entwicklungen in ihren Branchen.

4.6 Weiterentwicklung des Modells

Zurzeit sind keine weiteren Entwicklungsschritte geplant.

4.7 Weitere Aktivitäten im KAR-Bereich

Das BAFU wird den Kantonen bis Frühling 2020 eine Studie zur Mischabbruchverwertung in der Schweiz zur Verfügung stellen können. Auf Basis der in der Studie gewonnen Erkenntnisse aus den Auswertungen, Analysen und der Risikobewertung wird eine Gesamtbeurteilung der heutigen und künftigen Situation in der Mischabbruchentsorgung/-verwertung in der Schweiz erstellt. Die Studie soll aufzeigen, welche Verwertungsoptionen die grössten ökologischen und ökonomischen Potenziale aufweisen und welche Anwendungen allenfalls über lenkende Massnahmen, Vorgaben oder Regeln gefördert werden sollten. Es sollen Empfehlungen zur inhaltlichen Moduls «Bauabfälle: Teil Verwertung mineralischer Gestaltung des Rückbaumaterialien» der VVEA-Vollzugshilfe abgegeben und begründet werden, warum diese als sinnvoll erachtet werden.

Die Zentralschweizer Kantone sind derzeit daran, eine Baustoffrecyclingstrategie zu entwickeln. Der Grundlagenbericht für den Kanton Luzern als Pilot wird dazu spätestens bis Ende 2020 zur Verfügung stehen. Die dazugehörigen kantonalen Massnahmenpläne sollen daran anschliessend erarbeitet werden. Im gleichen Zeitraum wird in einem zweiten Projekt untersucht, ob bzw. welche Anteile der in der Zentralschweiz in Deponien abgelagerten mineralischen Rückbau- und Aushubmaterialien noch verwertbar wären.

5 Literatur

- Bundesamt für Statistik, 2016: Szenarien zur Bevölkerungsentwicklung der Kantone 2015-2045, https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung.assetdetail.40822.html
- Rubli Stefan, 2012: *Modellierung der Bau-, Rückbau- und Aushubmaterialflüsse: Überregionale Betrachtung.* Umweltämter der Kantone Aargau, Schaffhausen, St.Gallen, Solothurn, Schwyz, Thurgau, Zug und Zürich
- Rubli Stefan, 2015: *Modellierung der Bau-, Rückbau- und Aushubmaterialflüsse: Modellerweiterung und Nachführung 2013.* Umweltämter der Kantone Bern, Luzern, Thurgau, Schwyz, Solothurn, St.Gallen, Zug und Zürich.
- Rubli Stefan, 2016: KAR-Modell Modellierung der Kies-, Rückbau- und Aushubmaterialflüsse: Modellerweiterung und Nachführung 2014. Umweltämter der Kantone Bern, Thurgau, Solothurn, St.Gallen, Zug und Zürich.
- Rubli Stefan, 2017: *KAR-Modell Modellierung der Kies-, Rückbau- und Aushubmaterialflüsse: Modellerweiterung und Nachführung 2015.* Umweltämter der Kantone Aargau, Bern, Luzern, Thurgau, Solothurn, St.Gallen, Zug und Zürich.
- Rubli Stefan, 2018: KAR-Modell Modellierung der Kies-, Rückbau- und Aushubmaterialflüsse: Modellerweiterung und Nachführung 2016. Umweltämter der Kantone Aargau, Bern, Luzern, Thurgau, Schwyz, Solothurn, St.Gallen, Zug und Zürich.

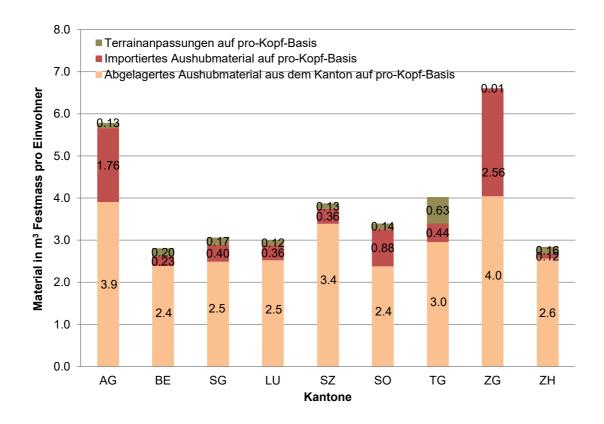
Anhang

A.1. Kurzbeschreibung der Prozesse

Nr.	Prozess	Beschreibung
1	Bauwerk	Das BAUWERK umfasst Hoch- und Tiefbau mit den Bautätigkeiten aus Neubau, Sanierung und Rückbau. Das ist der einzige Prozess im KAR-Modell mit einem modellierten Lager.
2	Rückbaumaterial triagieren	Im Modell wird das anfallende Rückbaumaterial aus dem BAUWERK in diesem Prozess aufgenommen und zu den Folgeprozessen 'verteilt. In der Realität passiert diese Triage auf der Baustelle oder einer Sortierstelle.
3	Rückbau- und Aushubmaterial deponieren	Die Deponien stehen im Modell für alle Deponietypen (ISO, Reaktor, 'Aushub', bzw. Typ A-E).
4	Rückbaumaterial aufbereiten	Rückbaumaterial wird aufbereitet. Dabei fällt die Feinfraktion an, welche deponiert wird.
5	Aushub triagieren	Das anfallende Aushubmaterial aus dem BAUWERK wird in diesem Prozess (virtuell) gesammelt und auf die Folgeprozesse verteilt. In der Realität passiert diese Triage auf der Baustelle oder einem Zwischenlager.
6	Wiederauffüllung Entnahmestellen	Wiederauffüllung von Kiesabbaustellen mit unverschmutztem Aushubmaterial (Rekultivierung).
7	Kies/Sand abbauen	Der Abbau von Primärmaterial umfasst Kies-, Sand-, Gips-, Ton- Abbau in Gruben und anderen Abbaustellen.
8	Kies/Sand aufbereiten	Das abgebaute Primärmaterial wird aufbereitet. Dabei fällt eine Feinfraktion an, die wieder in der Abbaustelle abgelagert wird.
9	Baustoffe produzieren	Mineralische Baustoffe werden aus primären und sekundären Rohstoffen produziert und stehen als Total für das BAUWERK zur Verfügung. In der Realität geschieht dies teilweise auf der Baustelle oder in einer Produktionsanlage.
10	Weitere Baustoffe produzieren	Weitere Baustoffe wie Kalk/Mergen, Gipsgestein, Tonmineralien usw. werden zu Baustoffen wie Zement, Gipswerkstoffen, Back- und Ziegelsteinen usw. aufbereitet.
11	Weitere Primärmaterialien abbauen	Weitere mineralische Baustoffe (exkl. Kies/Sand) wie Kalk/Mergel, Gipsgestein, Tonmineralien usw. werden abgebaut.
12	Teil- und Wiederauffüllung	Die "Weiteren Entnahmestellen" werden mit Aushubmaterial aufgefüllt. Oftmals werden diese Entnahmestellen nicht mehr vollständig mit Aushubmaterial aufgefüllt → Teilauffüllung.

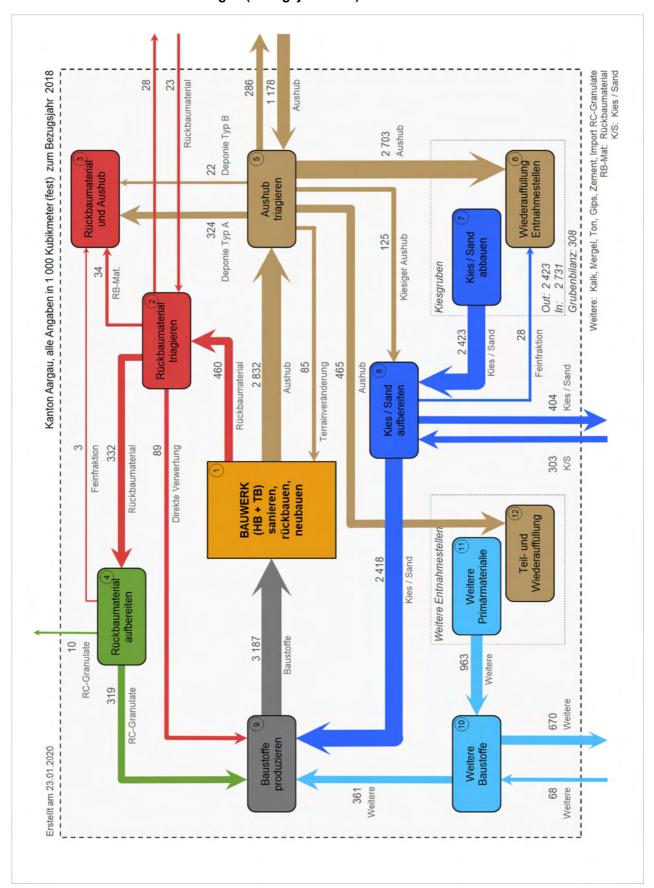
A.2. Beschreibung der Materialflüsse im KAR-Modell

Bemerkung: Die Nummernbezeichnung der Materialflüsse basiert auf der Richtung des Flusses von einem Prozess in den anderen Prozess. Beispiel: Der Fluss A12 (Anfall Rückbaumaterial aus dem BAUWERK) führt vom Prozess 1 «Bauwerk» in den Prozess 2 «Triage Rückbaumaterial».


Nr.	Beschreibung des Materialflusses
A12	Anfall Rückbaumaterial aus dem BAUWERK
A15	Anfall Aushub aus dem BAUWERK
A23	Rückbaumaterial, das deponiert wird
A24	Rückbaumaterial, das aufbereitet wird
A29	Rückbaumaterial, das direkt auf der Baustelle verwertet wird (nur im Tiefbau)
A43	Feinfraktion aus der Aufbereitung von Rückbaumaterial, die deponiert wird
A49	RC-Granulate, die als Baustoffe eingesetzt werden können; im Modell explizit ohne Primärmaterial
A51	Aushub, der für Terrainanpassungen auf der Parzelle verwendet wird
A53.A	Aushub, der auf Deponien des Typs A abgelagert wird
A53.B	Aushub, der auf Deponien des Typs B abgelagert wird
A56	Unverschmutzter Aushub, der für die Wiederauffüllung von Entnahme-
	stellen (von Kies/Sand) verwendet wird (Rekultivierung)
A58	Kiesiger Aushub, der zu Primärmaterial aufbereitet werden kann
A78	Abgebauter Kies/Sand; dieser Fluss wird in der SFA als 'Zielfluss' modelliert
A86	Feinfraktion aus der Aufbereitung von Kies/Sand, wird direkt in der Abbaustelle abgelagert
A89	Aufbereiteter Kies/Sand für die Baustoffproduktion
A91	Baustoffinput in das BAUWERK, bzw. der Bedarf an Baustoffen im BAUWERK
A512	Aushub, der in die "Weiteren Entnahmestellen" zur Teil- und Wieder- auffüllung gelangt
A109	Weitere aufbereitete mineralische Baustoffe für die Baustoffproduktion (z.B. Zement für Betonproduktion)
A1110	Weitere mineralische Primärmaterialien, die in die Aufbereitung gelangen (z.B. Kalk/Mergel für die Zementproduktion)

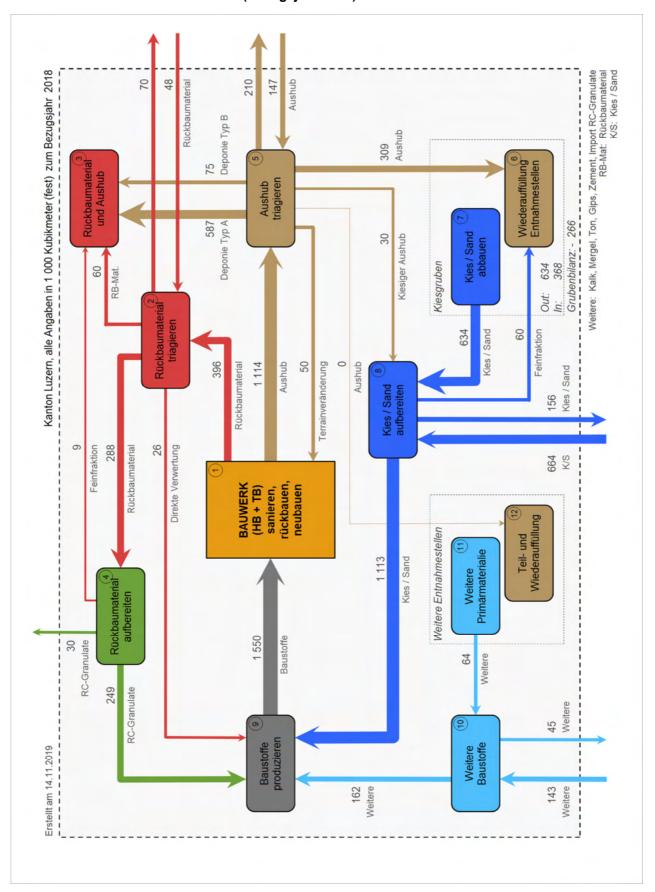
Materialimporte

	A02	Rückbaumaterial in die Triage Rückbaumaterial
	A06	Aushubmaterial zur Triage Aushub
	A08	Kies/Sand in die Kies-/Sandaufbereitung
	A010	Weitere mineralische Baustoffe zur Aufbereitung
	Materialexporte	
_	A20	Rückbaumaterial aus der Triage Rückbaumaterial
	A40	RC-Granulate aus der Aufbereitung RC-Material
	A50	Aushubmaterial aus der Triage Aushub
	A80	Kies/Sand aus der Aufbereitung Primärmaterial
	A100	Weitere Baustoffe aus der Aufbereitung "Weitere Baustoffe"
	Materialexporte A20 A40 A50 A80	Rückbaumaterial aus der Triage Rückbaumaterial RC-Granulate aus der Aufbereitung RC-Material Aushubmaterial aus der Triage Aushub Kies/Sand aus der Aufbereitung Primärmaterial

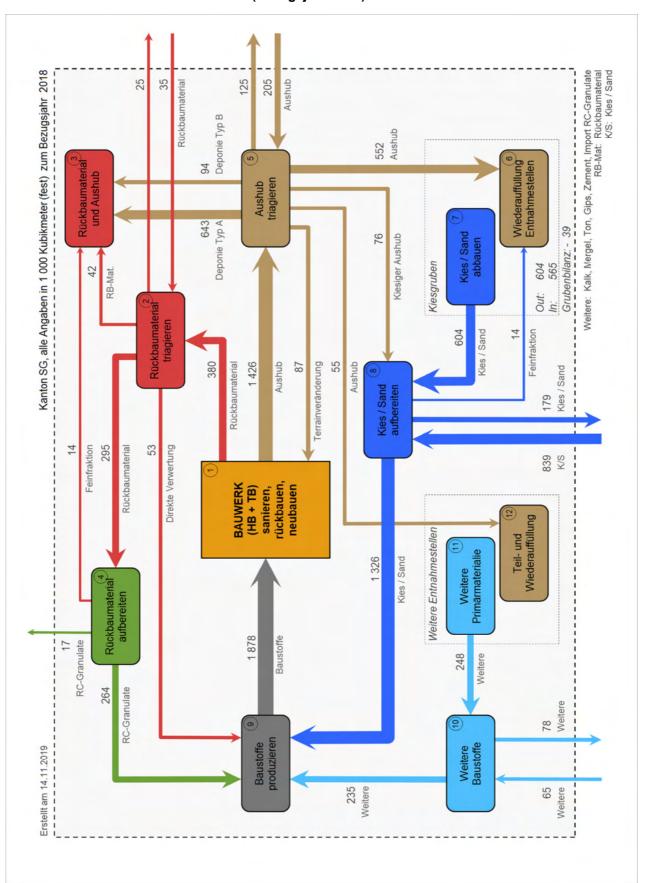


A.3. Abgelagertes Aushubmaterial aus dem Kanton, importiertes Aushubmaterial und Material in Terrainanpassungen

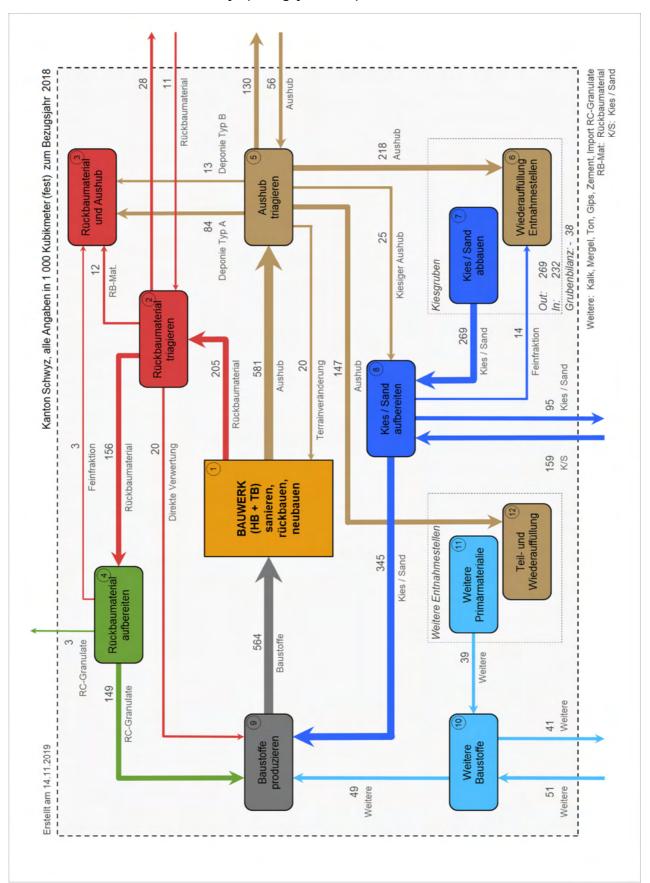
A.4. Materialflussschemen der einzelnen Kantone Materialflussschema Kanton Aargau (Bezugsjahr 2018)



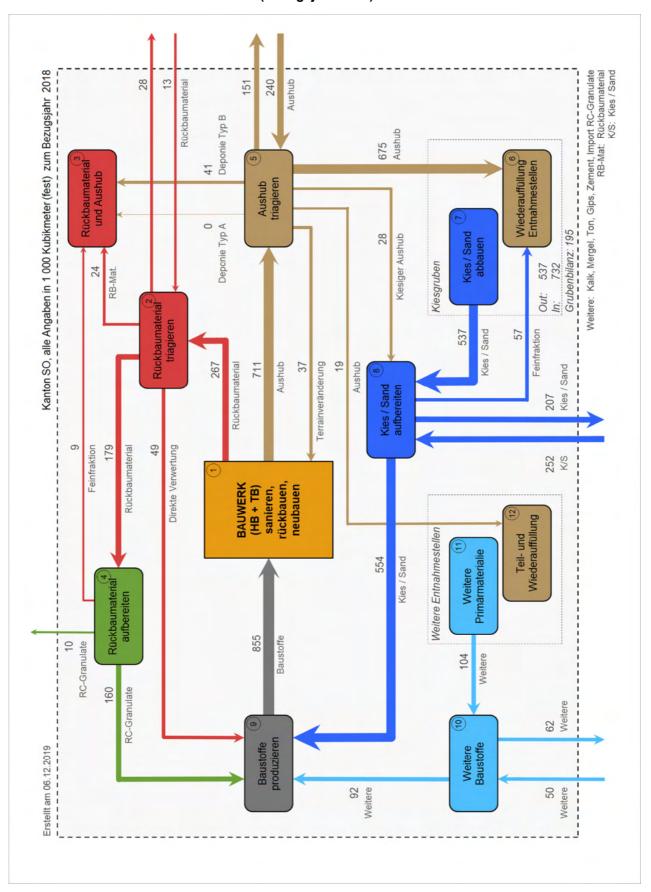
Materialflussschema Kanton Bern (Bezugsjahr 2018)



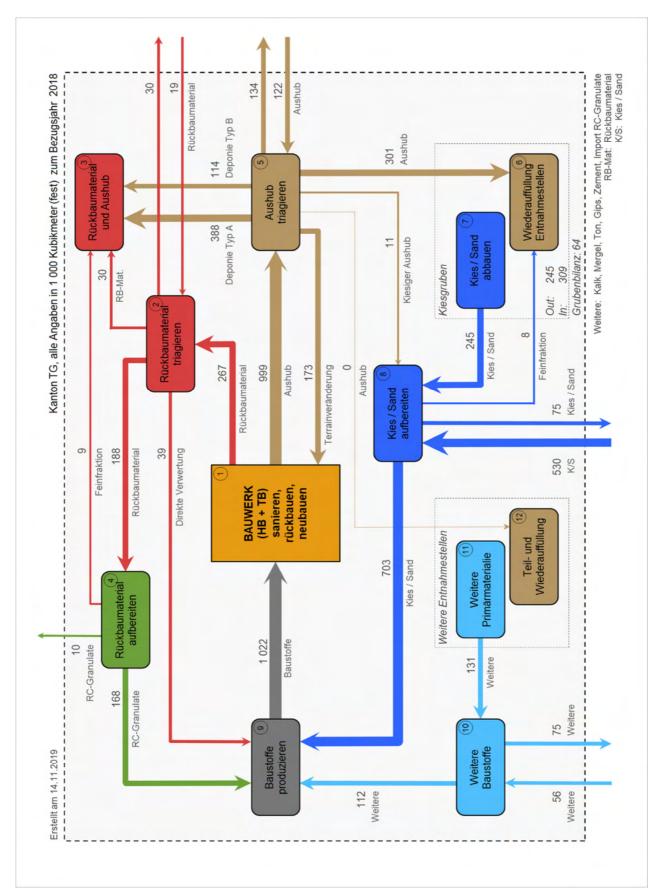
Materialflussschema Kanton Luzern (Bezugsjahr 2018)



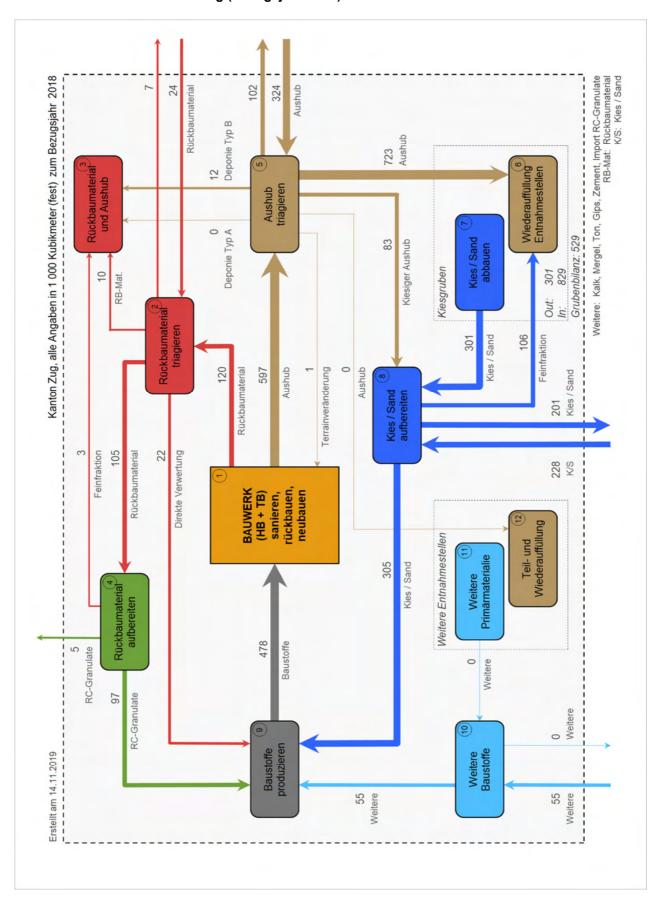
Materialflussschema Kanton St. Gallen (Bezugsjahr 2018)



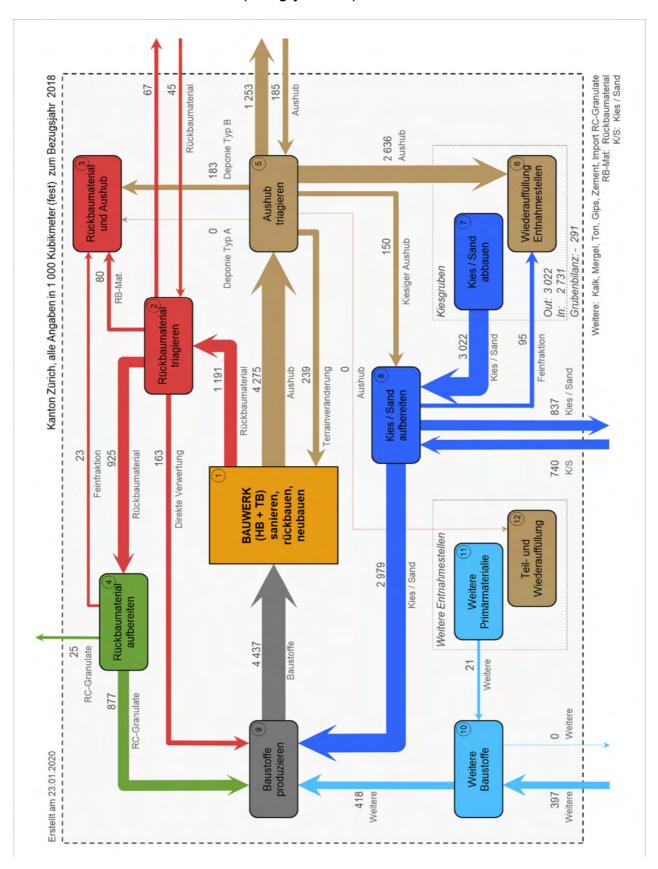
Materialflussschema Kanton Schwyz (Bezugsjahr 2018)



Materialflussschema Kanton Solothurn (Bezugsjahr 2018)



Materialflussschema Kanton Thurgau (Bezugsjahr 2018)



Materialflussschema Kanton Zug (Bezugsjahr 2018)

Materialflussschema Kanton Zürich (Bezugsjahr 2018)

A.5 Input-Output-Tabellen für Kies, Aushub- und Rückbaumaterial

Werte nach Ausgleichsrechnung

I-O-Tabelle Kies

RESULTAT SO	OLVER		Hier nichts ei	ntragen, wird	alles berechn	et.										
SOLVER	AG	BE	LU	SG	SZ	so	TG	ZG	ZH	Total Exporte 1	Output nach EXTERN	Total Exporte 2, SOLVER	Angaben Exporte Total	Differenz		Abweichung SOLVER zu Modell
AG	0	4'649	168'439	0	0	14'535	0	2'748	159'922	350'293	53'707	404'000	404'000	0		0.0%
BE	4'000	0	14'700	0	0	159'803	0	0	16'500	195'003	8'567	203'570	230'000	26'430		-11.5%
LU	4'596	26'399	0	0	5'194	6'500	0	87'875	20'921	151'485	4'125	155'610	150'000	5'610		3.7%
SG	0	0	0	0	48'203	0	41'277	0	40'905	130'386	48'608	178'994	178'994	0		0.0%
SZ	0	0	4'157	6'640	0	0	0	65'097	11'445	87'339	7'662	95'001	95'000	1		0.0%
SO	44'754	87'096	20'900	0	0	0	0	0	3'957	156'708	50'310	207'018	220'000	12'982		-5.9%
TG	0	0	0	34'836	0	0	0	0	31'409	66'245	8'567	74'812	80'000	5'188		-6.5%
ZG	11'160	0	48'238	0	68'688	0	0	0	52'443	180'528	20'387	200'915	200'917	1		0.0%
ZH	36'701	0	211'119	338'697	13'200	546	125'561	25'393	0	751'217	86'209	837'426	837'426	0		0.0%
Total Importe	101'210	118'144	467'553	380'173	135'285	181'384	166'839	181'112	337'502	2'069'203	288'143	2'357'346	2'396'337	50'212		-1.6%
Importe aus EXTERN	201'457	36'856	196'547	458'493	24'001	70'729	363'162	47'222	402'628	1'801'095						
Total Importe 2, SOLVER	302'667	155'001	664'100	838'667	159'286	252'113	530'000	228'334	740'130	3'870'298						
Angaben Importe Total	290'000	155'000	664'100	830'000	165'000	240'000	530'000	228'333	740'130	3'842'563						
Differenz Zeilen	12'667	1	0	8'667	5'714	12'113	0	1	0	39'163						
Differenz Spalten	0	26'430	5'610	0	1	12'982	5'188	1	0	50'212	89'375	Zu minimiere	n, die Zielzell	e für den SOL\	/ER	
Abweichung SOLVER zu Modell	4.4%	0.0%	0.0%	1.0%	-3.5%	5.0%	0.0%	0.0%	0.0%	0.7%						

I-O-Tabelle Aushubmaterial

ESULTAT S	OLVER		Hier nichts ei	ntragen, wird	alles berechne	et.									
SOLVER	AG	BE	LU	SG	SZ	so	TG	ZG	ZH	Total Exporte 1	Output nach EXTERN	Total Exporte 2, SOLVER	Angaben Exporte Total	Differenz	Abweic SOLVE Mod
AG	0	10'974	44'080	0	0	90'089	0	3'029	53'889	202'061	84'123	286'184	240'000	46'184	
BE	5'565	0	10'080	0	0	96'966	0	0	0	112'611	75'850	188'462	200'000	11'538	
LU	88'689	12'100	0	0	3'071	16'255	0	66'244	14'249	200'609	9'391	210'000	210'000	0	
SG	0	0	0	0	9'214	0	76'831	0	14'249	100'295	24'706	125'000	125'000	0	
SZ	26'069	0	42'750	32'554	0	0	0	8'977	14'249	124'599	5'401	130'000	130'000	0	
SO	28'695	65'602	992	0	0	0	0	0	21'922	117'212	33'277	150'489	160'000	9'511	
TG	0	0	0	80'867	0	0	0	0	15'000	95'867	37'639	133'506	140'000	6'494	
ZG	27'036	0	41'910	0	18'000	0	0	0	12'514	99'460	2'219		110'000	8'321	
ZH	883'257	17'393	3'150	34'707	23'357	546	36'129	168'360	0	1'166'901	85'791	1'252'692	1'252'692	0	
Total Importe	1'059'312	106'069	142'963	148'128	53'642	203'857	112'961	246'610	146'073	2'219'615	358'398	2'578'013	2'567'692	82'049	
mporte aus EXTERN	118'489	124'535	4'237	57'221	2'401	36'143	8'653	77'493	39'288	468'460					
Total Importe 2, SOLVER	1'177'801	230'604	147'200	205'349	56'044	240'000	121'614	324'103	185'361	2'688'075					
Angaben mporte Fotal	1'177'801	230'604	147'200	205'349	60,000	240'000	121'614	324'103	170'000	2'676'671					
Differenz	1177 001	200 004	147 200	200 040	00 000	240 000	121014	324 103	170 000	20,00.					
Zeilen	0	0	0	0	3'956	0	0	0	15'361	19'319					
Differenz											101'368	Zu minimioro	n dia Zialzalle	e für den SOLVE	D
Spalten	46'184	11'538	0	0	0	9'511	6'494	8'321	0	82'049	101 300	Zu mmillillere	ii, uie zielzelle	iui deil SOLVE	IX.
Abweichung SOLVER zu Modell	0.0%	0.0%	0.0%	0.0%	-6.6%	0.0%	0.0%	0.0%	9.0%	0.4%					

I-O-Tabelle Rückbaustoffe

SOLVER	AG	BE	LU	SG	sz	so	TG	ZG	ZH	Total Exporte 1	Output nach EXTERN	Total Exporte 2, SOLVER	Angaben Exporte Total	Differenz	Abwe SOL M
AG	0	3'381	17'064	0	0	2'481	0	0	4'749	27'674	3	27'676	50'000	22'324	
BE	1'181	0	297	0	0	4'134	0	0	0	5'613		5'969	30'000	24'031	
LU	4'050	341	0	0	2'481	4'050	0	2'400	4'050	17'372	52'462	69'834	70'000	166	
SG	0	0	0	0	2'481	0	11'274	0	1'583	15'337	9'663	25'000	25'000	0	
SZ	0	0	1738	827	0	0	0	9'600	4'749	16'914	11'401	28'315	35'000	6'685	
SO	13'500	12'407	1749	0	0	0	0	0	317	27'972	5	27'978	28'000	22	
TG	0	0	0	10'766	0	0	0	0	16'929	27'695	2'718	30'413	30'000	413	
ZG	0	0	2717	0	2'481	0	0	0	1'583	6'781	357	7'137	20'000	12'863	
ZH	4'050	0	23'056	17'826	2'481	165	7'395	12'000	0	66'972			67'000	144	
otal Importe	22'781	16'129	46'621	29'419	9'923	10'830	18'668	24'000	33'958	212'329	77'138	289'467	355'000	66'647	
nporte aus XTERN	236	1'706	1'254	5'501	1'351	2'481	520	142	10'801	23'993					
otal mporte 2, SOLVER	23'018	17'835	47'875	34'920	11'274	13'311	19'188	24'142	44'760	236'322					
ingaben nporte otal	25'000	17'826	50'000	35'000	20'000	35'000	20'000	30'000	45'000	277'826					
ifferenz															
eilen eilen	1'983	9	2'125	80	8'726	21'689	812	5'858	240	41'522					
ifferenz palten	22'324	24'031	166	0	6'685	22	413	12'863	144	66'647	108'169	Zu minimiere	n, die Zielzelle	e für den SOLV	ER
bweichung OLVER zu odell	-7.9%	0.0%	-4.3%	-0.2%	-43.6%	-62.0%	-4.1%	-19.5%	-0.5%	-14.9%					

A.6 Verwendete Dichten und Umrechnungsfaktoren

	Dichte (fest)	Umrechnung	Dichte (lose)
Material	t/m³	fest -> lose	t/m³
Kies/Sand	2,00	1,20	1,67
Belag	2,00	1,20	1,67
Beton	2,40	1,20	2,00
Mauerwerk	1,60	1,20	1,33
Brennbares KVA	0,16	1,20	0,13
Holz	0,70	1,20	0,58
Metalle	5,90	1,20	4,92
Mineral. Fraktion	1,50	1,20	1,25
Aushub	2,00	1,20	1,67
Betonabbruch	2,40	1,20	2,00
Mischabbruch	2,08	1,20	1,73
Strassenaufbruch	2,00	1,20	1,67
Ausbauasphalt	2,00	1,20	1,67
Betongranulat	2,40	1,20	2,00
Mischgranulat	2,08	1,20	1,73
RC-Kies/Sand	2,00	1,20	1,67
RC-Belag	2,00	1,20	1,67